Доклады Российской академии наук. Математика, информатика, процессы управления
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Докл. РАН. Матем., информ., проц. упр.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Доклады Российской академии наук. Математика, информатика, процессы управления, 2023, том 514, номер 1, страницы 59–64
DOI: https://doi.org/10.31857/S2686954323600453
(Mi danma432)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

МАТЕМАТИКА

Существование максимального среднего временного сбора в КПП-модели на сфере при постоянном и импульсном отборах

Е. В. Винниковab, А. А. Давыдовab, Д. В. Туницкийc

a Московский государственный университет имени М. В. Ломоносова, Москва, Россия
b НИТУ МИСИС, Москва, Россия
c Институт проблем управления им. В. А. Трапезникова РАН, Москва, Россия
Список литературы:
Аннотация: На двумерной сфере рассматривается распределенный возобновляемый ресурс любой природы, динамика которого описывается моделью типа Колмогорова–Петровского–Пискунова–Фишера, и эксплуатация этого ресурса, осуществляемая путем постоянного или периодического импульсного отбора плотности ресурса. Показано, что после выбора допустимой стратегии эксплуатации динамика ресурса стремится к предельной динамике, соответствующей этой стратегии, и что существуют допустимые стратегии, доставляющие максимум среднего временного сбора ресурса.
Ключевые слова: модель Колмогорова–Петровского–Пискунова–Фишера, параболическое полулинейное уравнение, слабое решение, стабилизация, оптимальное управление.
Финансовая поддержка Номер гранта
Российский научный фонд 19-11-00223
Исследование выполнено за счет гранта Российского научного фонда (проект № 19-11-00223) в МГУ им. М.В. Ломоносова.
Статья представлена к публикации: А. Л. Семёнов
Поступило: 30.05.2023
После доработки: 23.10.2023
Принято к публикации: 03.11.2023
Англоязычная версия:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 472–476
DOI: https://doi.org/10.1134/S1064562423701387
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.956.4+517.956.8+517.955
Образец цитирования: Е. В. Винников, А. А. Давыдов, Д. В. Туницкий, “Существование максимального среднего временного сбора в КПП-модели на сфере при постоянном и импульсном отборах”, Докл. РАН. Матем., информ., проц. упр., 514:1 (2023), 59–64; Dokl. Math., 108:3 (2023), 472–476
Цитирование в формате AMSBIB
\RBibitem{VinDavTun23}
\by Е.~В.~Винников, А.~А.~Давыдов, Д.~В.~Туницкий
\paper Существование максимального среднего временного сбора в КПП-модели на сфере при постоянном и импульсном отборах
\jour Докл. РАН. Матем., информ., проц. упр.
\yr 2023
\vol 514
\issue 1
\pages 59--64
\mathnet{http://mi.mathnet.ru/danma432}
\crossref{https://doi.org/10.31857/S2686954323600453}
\elib{https://elibrary.ru/item.asp?id=56718062}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 472--476
\crossref{https://doi.org/10.1134/S1064562423701387}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/danma432
  • https://www.mathnet.ru/rus/danma/v514/i1/p59
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Доклады Российской академии наук. Математика, информатика, процессы управления Доклады Российской академии наук. Математика, информатика, процессы управления
    Статистика просмотров:
    Страница аннотации:93
    Список литературы:11
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024