|
Дискретный анализ и исследование операций, сер. 1, 2000, том 7, выпуск 2, страницы 21–46
(Mi da260)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
О сложности нахождения связной предписанной раскраски вершин графа
А. В. Кононов, С. В. Севастьянов Институт математики им. С. Л. Соболева СО РАН
Аннотация:
Рассматривается задача о связной раскраске вершин графа в предписанные цвета (СПР). Приводится подробный анализ сложности задачи в зависимости от значений четырех параметров: тип графа, максимальная степень графа, максимальная мощность предписания и максимальная частота вхождения цвета в предписания вершин. Для классов входов задачи СПР, определяемых значением четырехмерного характеристического вектора, находится система из восьми базисных классов, три из которых являются минимальными NP-полными, а остальные пять классов – максимальными полиномиально разрешимыми. Доказывается полнота представленной системы, т. е. сводимость любого класса входов к одному из восьми базисных классов. Показывается связь между задачей СПР и задачами дискретной оптимизации: задачей нахождения связных областей обслуживания, задачами построения расписаний на параллельных машинах, задачей нахождения максимального паросочетания в двудольном гиперграфе, задачей нахождения подсемейств векторов с суммой из заданной области. Табл. 1, ил. 1, библиогр. 7.
Статья поступила: 01.11.1999
Образец цитирования:
А. В. Кононов, С. В. Севастьянов, “О сложности нахождения связной предписанной раскраски вершин графа”, Дискретн. анализ и исслед. опер., сер. 1, 7:2 (2000), 21–46
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/da260 https://www.mathnet.ru/rus/da/v7/s1/i2/p21
|
|