|
МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ
Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели
Ф. Ш. Шокиров Физико-технический институт им. С. У. Умарова АН РТ,
734063, Республика Таджикистан, г. Душанбе, проспект Айни, 299/1
Аннотация:
Методами численного моделирования проведено исследование процессов взаимодействия осциллирующего солитона (бризера) с 180-градусной доменной стенкой нееловского типа в рамках $(2+1)$-мерной суперсимметричной О(3) нелинейной сигма-модели. Целью настоящей работы является исследование нелинейной эволюции и устойчивости системы взаимодействующих локализованных динамических и топологических решений. Для построения моделей взаимодействия были использованы стационарные бризерные решения и решения в виде доменных стенок, полученные в рамках двумерного уравнения синус-Гордона добавлением специально подобранных возмущений вектору А3-поля в изотопическом пространстве блоховской сферы. При отсутствии внешнего магнитного поля нелинейные сигма-модели обладают формальной лоренц-инвариантностью, которая позволяет построить, в частности, движущиеся решения и провести полный анализ экспериментальных данных нелинейной динамики системы взаимодействующих солитонов. В настоящей работе на основе полученных движущихся локализованных решений построены модели налетающих и лобовых столкновений бризеров с доменной стенкой, где, в зависимости от динамических параметров системы, наблюдаются процессы столкновения и отражения солитонов друг от друга, дальнодействующие взаимодействия, а также распад осциллирующего солитона на линейные волны возмущений. В отличие от бризерного решения, обладающего динамикой внутренней степени свободы, интеграл энергии топологически устойчивого солитона во всех проведенных экспериментах сохраняется с высокой точностью. Для каждого типа взаимодействия определен интервал значений скорости движения сталкивающихся динамических и топологических солитонов в зависимости от частоты вращения вектора А3-поля в изотопическом пространстве. Численные модели построены на основе методов теории конечных разностных схем, использованием свойств стереографической проекции, с учетом теоретико-групповых особенностей конструкций класса O(N) нелинейных сигма-моделей теории поля. По периметру двумерной области моделирования установлены специально разработанные граничные условия, которые поглощают линейные волны возмущений, излучаемые взаимодействующими солитонными полями. Таким образом, осуществлено моделирование процессов взаимодействия локализованных решений в бесконечном двумерном фазовом пространстве. Разработан программный модуль, позволяющий провести комплексный анализ эволюции взаимодействующих решений нелинейных сигма-моделей теории поля, с учетом ее групповых особенностей в двумерном псевдоевклидовом пространстве. Проведен анализ изоспиновой динамики, а также плотности и интеграла энергии системы взаимодействующих динамических и топологических солитонов.
Ключевые слова:
динамика взаимодействия, двумерный бризер, доменная стенка, нелинейная сигма-модель, уравнение синус-Гордона, численное моделирование, изотопическое пространство.
Поступила в редакцию: 28.07.2017 Принята в печать: 29.09.2017
Образец цитирования:
Ф. Ш. Шокиров, “Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели”, Компьютерные исследования и моделирование, 9:5 (2017), 773–787
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm98 https://www.mathnet.ru/rus/crm/v9/i5/p773
|
Статистика просмотров: |
Страница аннотации: | 332 | PDF полного текста: | 107 | Список литературы: | 65 |
|