Компьютерные исследования и моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерные исследования и моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерные исследования и моделирование, 2022, том 14, выпуск 2, страницы 321–334
DOI: https://doi.org/10.20537/2076-7633-2022-14-2-321-334
(Mi crm970)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

A gradient method with inexact oracle for composite nonconvex optimization
[Градиентный метод с неточным оракулом для задач композитной невыпуклой оптимизации]

P. E. Dvurechenskiiab

a Weierstrass Institute for Applied Analysis and Stochastics, 39 Mohrenstraße, Berlin, 10117, Germany
b Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
Список литературы:
Аннотация: В этой статье мы предлагаем новый метод первого порядка для композитных невыпуклых задач минимизации с простыми ограничениями и неточным оракулом. Целевая функция задается как сумма «сложной», возможно, невыпуклой части с неточным оракулом и «простой» выпуклой части. Мы обобщаем понятие неточного оракула для выпуклых функций на случай невыпуклых функций. Неформально говоря, неточность оракула означает, что для «сложной» части в любой точке можно приближенно вычислить значение функции и построить квадратичную функцию, которая приближенно ограничивает эту функцию сверху. Рассматривается два возможных типа ошибки: контролируемая, которая может быть сделана сколь угодно маленькой, например, за счет решения вспомогательной задачи, и неконтролируемая. Примерами такой неточности являются: гладкие невыпуклые функции с неточным и непрерывным по Гёльдеру градиентом, функции, заданные вспомогательной равномерно вогнутой задачей максимизации, которая может быть решена лишь приближенно. Для введенного класса задач мы предлагаем метод типа проекции градиента / зеркального спуска, который позволяет использовать различные прокс-функции для задания неевклидовой проекции на допустимое множество и более гибкой адаптации к геометрии допустимого множества; адаптивно выбирает контролируемую ошибку оракула и ошибку неевклидового проектирования; допускает неточное проксимальное отображение с двумя типами ошибки: контролируемой и неконтролируемой. Мы доказываем скорость сходимости нашего метода в терминах нормы обобщенного градиентного отображения и показываем, что в случае неточного непрерывного по Гёльдеру градиента наш метод является универсальным по отношению к параметру и константе Гёльдера. Это означает, что методу не нужно знание этих параметров для работы. При этом полученная оценка сложности является равномерно наилучшей при всех параметрах Гёльдера. Наконец, в частном случае показано, что малое значение нормы обобщенного градиентного отображения в точке означает, что в этой точке приближенно выполняется необходимое условие локального минимума.
Ключевые слова: невыпуклая оптимизация, композитная оптимизация, неточный оракул, непрерывный по Гёльдеру градиент, универсальный градиентный метод.
Финансовая поддержка Номер гранта
Российский научный фонд 21-71-30005
Исследование выполнено за счет гранта Российского научного фонда (проект № 21-71-30005).
Поступила в редакцию: 11.02.2022
Принята в печать: 13.02.2022
Тип публикации: Статья
УДК: 519.853.62
Язык публикации: английский
Образец цитирования: P. E. Dvurechenskii, “A gradient method with inexact oracle for composite nonconvex optimization”, Компьютерные исследования и моделирование, 14:2 (2022), 321–334
Цитирование в формате AMSBIB
\RBibitem{Dvu22}
\by P.~E.~Dvurechenskii
\paper A gradient method with inexact oracle for composite nonconvex optimization
\jour Компьютерные исследования и моделирование
\yr 2022
\vol 14
\issue 2
\pages 321--334
\mathnet{http://mi.mathnet.ru/crm970}
\crossref{https://doi.org/10.20537/2076-7633-2022-14-2-321-334}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/crm970
  • https://www.mathnet.ru/rus/crm/v14/i2/p321
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерные исследования и моделирование
    Статистика просмотров:
    Страница аннотации:107
    PDF полного текста:45
    Список литературы:35
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024