|
МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ
Об устойчивости гравитационной системы многих тел
К. Э. Плохотниковab a Московский государственный университет им. М. В. Ломоносова,
Россия, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 2
b Финансовый университет при Правительстве РФ,
Россия, 125993, ГСП-3, г. Москва, Ленинградский просп., д. 49
Аннотация:
В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.
Ключевые слова:
численные методы, обыкновенные дифференциальные уравнения, метод Монте-Карло.
Поступила в редакцию: 16.03.2021 Исправленный вариант: 25.04.2021 Принята в печать: 29.04.2021
Образец цитирования:
К. Э. Плохотников, “Об устойчивости гравитационной системы многих тел”, Компьютерные исследования и моделирование, 13:3 (2021), 487–511
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm898 https://www.mathnet.ru/rus/crm/v13/i3/p487
|
Статистика просмотров: |
Страница аннотации: | 171 | PDF полного текста: | 58 | Список литературы: | 47 |
|