Компьютерные исследования и моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерные исследования и моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерные исследования и моделирование, 2017, том 9, выпуск 4, страницы 567–578
DOI: https://doi.org/10.20537/2076-7633-2017-9-4-567-578
(Mi crm83)
 

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

Сравнительный анализ методов конечных разностей и контрольного объема на примере решения нестационарной задачи естественной конвекции и теплового излучения в замкнутом кубе, заполненном диатермичной средой

Н. С. Бондарева, Н. С. Гибанов, С. Г. Мартюшев, И. В. Мирошниченко, М. А. Шеремет

Научно-исследовательская лаборатория моделирования процессов конвективного тепломассопереноса Федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет», Россия, 634050, г. Томск, пр. Ленина, д. 36
Список литературы:
Аннотация: Проведен сравнительный анализ двух численных методик моделирования нестационарных режимов термогравитационной конвекции и теплового поверхностного излучения в замкнутой дифференциально обогреваемой кубической полости. Рассматриваемая область решения имела две изотермические противоположные вертикальные грани, остальные стенки являлись адиабатическими. Поверхности стенок считались диффузно-серыми, т. е. их направленные спектральные степень черноты и поглощательная способность не зависят ни от угла, ни от длины волны, но могут зависеть от температуры поверхности. Относительно отраженного излучения использовались два предположения: 1) отраженное излучение является диффузным, т. е. интенсивность отраженного излучения в любой точке границы поверхности равномерно распределена по всем направлениям; 2) отраженное излучение равномерно распределено по каждой поверхности замкнутой области решения. Математическая модель, сформулированная как в естественных переменных «скорость – давление», так и в преобразованных переменных «векторный потенциал – вектор завихренности», реализована численно методом контрольного объема и методом конечных разностей соответственно. Следует отметить, что анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. При решении краевой задачи в естественных переменных методом контрольного объема для аппроксимации конвективных слагаемых применялся степенной закон, для диффузионных слагаемых — центральные разности. Разностные уравнения движения и энергии разрешались на основе итерационного метода переменных направлений. Для поиска поля давления, согласованного с полем скорости, применялась процедура SIMPLE. В случае метода конечных разностей и преобразованных переменных для аппроксимации конвективных слагаемых применялась монотонная схема Самарского, для диффузионных слагаемых — центральные разности. Уравнения параболического типа разрешались на основе локально-одномерной схемы Самарского. Дискретизация уравнений эллиптического типа для компонент векторного потенциала проводилась с использованием формул симметричной аппроксимации вторых производных. При этом полученное разностное уравнение разрешалось методом последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. В результате показано полное согласование полученных распределений скорости и температуры при различных значениях числа Рэлея, что отражает работоспособность представленных методик. Продемонстрирована эффективность использования преобразованных переменных и метода конечных разностей при решении класса нестационарных задач.
Ключевые слова: естественная конвекция, тепловое поверхностное излучение, диатермичная среда, естественные переменные, метод контрольного объема, преобразованные переменные, метод конечных разностей.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации МД-2819.2017.8
Работа выполнена при финансовой поддержке Совета по грантам Президента РФ для молодых российских ученых (грант МД-2819.2017.8).
Поступила в редакцию: 31.03.2017
Исправленный вариант: 09.06.2017
Принята в печать: 20.06.2017
Тип публикации: Статья
УДК: 519.6
Образец цитирования: Н. С. Бондарева, Н. С. Гибанов, С. Г. Мартюшев, И. В. Мирошниченко, М. А. Шеремет, “Сравнительный анализ методов конечных разностей и контрольного объема на примере решения нестационарной задачи естественной конвекции и теплового излучения в замкнутом кубе, заполненном диатермичной средой”, Компьютерные исследования и моделирование, 9:4 (2017), 567–578
Цитирование в формате AMSBIB
\RBibitem{BonGibMar17}
\by Н.~С.~Бондарева, Н.~С.~Гибанов, С.~Г.~Мартюшев, И.~В.~Мирошниченко, М.~А.~Шеремет
\paper Сравнительный анализ методов конечных разностей и контрольного объема на примере решения нестационарной задачи естественной конвекции и теплового излучения в замкнутом кубе, заполненном диатермичной средой
\jour Компьютерные исследования и моделирование
\yr 2017
\vol 9
\issue 4
\pages 567--578
\mathnet{http://mi.mathnet.ru/crm83}
\crossref{https://doi.org/10.20537/2076-7633-2017-9-4-567-578}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/crm83
  • https://www.mathnet.ru/rus/crm/v9/i4/p567
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерные исследования и моделирование
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024