|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ
Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
А. С. Ивановаab, С. С. Омельченкоb, Е. В. Котляроваb, В. В. Матюхинb a Национальный исследовательский университет «Высшая школа экономики»,
Россия, 101000, г. Москва, ул. Мясницкая, д. 20
b Национальный исследовательский университет «Московский физико-технический институт»,
Россия, 141701, г. Долгопрудный, Институтский пер., д. 9
Аннотация:
В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций из района $i$ в район $j$ .
Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.
Ключевые слова:
модель расчета матрицы корреспонденций, энтропийно-линейное программирование, метод Синхорна, метод ускоренного Синхорна.
Поступила в редакцию: 13.05.2020 Исправленный вариант: 30.08.2020 Принята в печать: 03.09.2020
Образец цитирования:
А. С. Иванова, С. С. Омельченко, Е. В. Котлярова, В. В. Матюхин, “Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы”, Компьютерные исследования и моделирование, 12:5 (2020), 961–978
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm829 https://www.mathnet.ru/rus/crm/v12/i5/p961
|
Статистика просмотров: |
Страница аннотации: | 200 | PDF полного текста: | 72 | Список литературы: | 33 |
|