|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
ЧИСЛЕННЫЕ МЕТОДЫ И ОСНОВЫ ИХ РЕАЛИЗАЦИИ
Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
Д. В. Садин Военно-космическая академия имени А. Ф. Можайского,
Россия, 197198, г. Санкт-Петербург, ул. Ждановская, д. 13
Аннотация:
Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывов и экстремумов в решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.
Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.
Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybridscheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5(weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.
Ключевые слова:
гибридный метод крупных частиц, регулирование диссипативных свойств, ударные волны, вихревая структура, неустойчивость на контактных границах.
Поступила в редакцию: 06.04.2020 Исправленный вариант: 06.05.2020 Принята в печать: 28.05.2020
Образец цитирования:
Д. В. Садин, “Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа”, Компьютерные исследования и моделирование, 12:4 (2020), 757–772
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm815 https://www.mathnet.ru/rus/crm/v12/i4/p757
|
Статистика просмотров: |
Страница аннотации: | 422 | PDF полного текста: | 346 | Список литературы: | 118 |
|