Компьютерные исследования и моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерные исследования и моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерные исследования и моделирование, 2017, том 9, выпуск 3, страницы 503–515
DOI: https://doi.org/10.20537/2076-7633-2017-9-3-503-515
(Mi crm79)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ

О границе упругопластических тел минимального объема

Ю. С. Найштут

Самарский государственный технический университет, Архитектурно-строительный институт, Россия, 443001, г. Самара, ул. Молодогвардейская, д. 194
Список литературы:
Аннотация: В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема. Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции. Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции. Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.
Ключевые слова: границы тел, коэффициент предельной нагрузки, оптимальное проектирование, жесткопластическое тело, среды Максвелла и Мичелла.
Поступила в редакцию: 10.01.2017
Исправленный вариант: 12.05.2017
Принята в печать: 31.05.2017
Тип публикации: Статья
УДК: 534.4: 517.9
Образец цитирования: Ю. С. Найштут, “О границе упругопластических тел минимального объема”, Компьютерные исследования и моделирование, 9:3 (2017), 503–515
Цитирование в формате AMSBIB
\RBibitem{Nay17}
\by Ю.~С.~Найштут
\paper О границе упругопластических тел минимального объема
\jour Компьютерные исследования и моделирование
\yr 2017
\vol 9
\issue 3
\pages 503--515
\mathnet{http://mi.mathnet.ru/crm79}
\crossref{https://doi.org/10.20537/2076-7633-2017-9-3-503-515}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/crm79
  • https://www.mathnet.ru/rus/crm/v9/i3/p503
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерные исследования и моделирование
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024