Компьютерные исследования и моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерные исследования и моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерные исследования и моделирование, 2018, том 10, выпуск 6, страницы 775–787
DOI: https://doi.org/10.20537/2076-7633-2018-10-6-775-787
(Mi crm684)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ

Задачи устойчивости тонких упругих оболочек

В. А. Грачев, Ю. С. Найштут

Архитектурно-строительная академия Самарского государственного технического университета, Россия, 443001, г. Самара, ул. Молодогвардейская, д. 194
Список литературы:
Аннотация: В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.
В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.
Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.
Ключевые слова: упругие оболочки, потеря устойчивости, трехмерная нелинейная теория упругости, вмятины на поверхности, акустические приборы.
Поступила в редакцию: 11.05.2018
Исправленный вариант: 27.08.2018
Принята в печать: 11.09.2018
Тип публикации: Статья
УДК: 519.6; 539.3
Образец цитирования: В. А. Грачев, Ю. С. Найштут, “Задачи устойчивости тонких упругих оболочек”, Компьютерные исследования и моделирование, 10:6 (2018), 775–787
Цитирование в формате AMSBIB
\RBibitem{GraNay18}
\by В.~А.~Грачев, Ю.~С.~Найштут
\paper Задачи устойчивости тонких упругих оболочек
\jour Компьютерные исследования и моделирование
\yr 2018
\vol 10
\issue 6
\pages 775--787
\mathnet{http://mi.mathnet.ru/crm684}
\crossref{https://doi.org/10.20537/2076-7633-2018-10-6-775-787}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/crm684
  • https://www.mathnet.ru/rus/crm/v10/i6/p775
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерные исследования и моделирование
    Статистика просмотров:
    Страница аннотации:189
    PDF полного текста:92
    Список литературы:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024