|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ
Прямые мультипликативные методы для разреженных матриц. Несимметричные линейные системы
А. Б. Свириденко ФГБОУ ВПО «Кубанский государственный университет», филиал в г. Новороссийске,
Россия, 353922, г. Новороссийск, ул. Героев Десантников, д. 87
Аннотация:
Малая практическая ценность многих численных методов решения несимметричных систем линейных уравнений с плохо обусловленными матрицами объясняется тем, что эти методы в реальных условиях ведут себя совсем иначе, чем в случае точных вычислений. Исторически вопросам устойчивости не отводилось достаточного внимания, как в численной алгебре «средних размеров», а делался акцент на решении задач максимального порядка при данных возможностях вычислительной машины, в том числе за счет некоторой потери точности результатов. Поэтому главными объектами исследования были: наиболее целесообразное хранение информации, заключенной в разреженной матрице; поддержание наибольшей степени ее разреженности на всех этапах вычислительного процесса. Таким образом, разработка эффективных численных методов решения неустойчивых систем относится к актуальным проблемам вычислительной математики.
В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения систем линейных уравнений, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Рассмотрен формат хранения разреженных матриц, преимущество которого состоит в возможности параллельного выполнения любых матричных операций без распаковывания, что значительно сокращает время выполнения операций и объем занимаемой памяти.
Прямые мультипликативные методы решения систем линейных уравнений являются наиболее приспособленными для решения задач большого размера на ЭВМ: разреженные матрицы системы позволяют получать мультипликаторы, главные строки которых также разрежены, а операция умножения вектора-строки на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора.
В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма линейного программирования предлагается положить модификацию прямого мультипликативного алгоритма решения систем линейных уравнений, основанного на интеграции техники метода линейного программирования для выбора ведущего элемента. Прямые мультипликативные методы линейного программирования являются наиболее приспособленными и для построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.
Ключевые слова:
численно устойчивые прямые мультипликативные методы, несимметричные линейные системы, формат хранения разреженных матриц, параллельное выполнение матричных операций без распаковывания, минимизация заполнения главных строк мультипликаторов, разреженные матрицы.
Поступила в редакцию: 08.04.2016 Исправленный вариант: 28.10.2016 Принята в печать: 09.11.2016
Образец цитирования:
А. Б. Свириденко, “Прямые мультипликативные методы для разреженных матриц. Несимметричные линейные системы”, Компьютерные исследования и моделирование, 8:6 (2016), 833–860
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm32 https://www.mathnet.ru/rus/crm/v8/i6/p833
|
Статистика просмотров: |
Страница аннотации: | 289 | PDF полного текста: | 232 | Список литературы: | 27 |
|