Компьютерные исследования и моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерные исследования и моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерные исследования и моделирование, 2016, том 8, выпуск 5, страницы 721–753
DOI: https://doi.org/10.20537/2076-7633-2016-8-5-721-753
(Mi crm24)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

ЧИСЛЕННЫЕ МЕТОДЫ И ОСНОВЫ ИХ РЕАЛИЗАЦИИ

О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость

Н. М. Евстигнеев

Федеральный исследовательский центр «Информатика и управление» Российской академии наук, Россия, 117312, г. Москва, проспект 60-летия Октября, д. 9
Список литературы:
Аннотация: В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге-Кутты при применении со схемами WENO.В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
Ключевые слова: WENO-схемы, нелинейные схемы, устойчивость численных схем, системы уравнений гиперболического типа, уравнение Хопфа.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 14-07-00123
Работа поддержана Российским фондом фундаментальных исследований (грант № 14-07-00123).
Поступила в редакцию: 01.07.2016
Исправленный вариант: 10.08.2016
Принята в печать: 01.09.2016
Тип публикации: Статья
УДК: 519.633.2:519.633.6
Образец цитирования: Н. М. Евстигнеев, “О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость”, Компьютерные исследования и моделирование, 8:5 (2016), 721–753
Цитирование в формате AMSBIB
\RBibitem{Evs16}
\by Н.~М.~Евстигнеев
\paper О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
\jour Компьютерные исследования и моделирование
\yr 2016
\vol 8
\issue 5
\pages 721--753
\mathnet{http://mi.mathnet.ru/crm24}
\crossref{https://doi.org/10.20537/2076-7633-2016-8-5-721-753}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/crm24
  • https://www.mathnet.ru/rus/crm/v8/i5/p721
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерные исследования и моделирование
    Статистика просмотров:
    Страница аннотации:419
    PDF полного текста:215
    Список литературы:43
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024