Аннотация:
В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.
Ключевые слова:нелинейное уравнение параболического типа, уравнение теплопроводности, метод нулевого поля, метод коллокаций, радиальные базисные функции, метод граничных элементов
Поступила в редакцию: 27.12.2022 Исправленный вариант: 18.07.2023 Принята в печать: 16.08.2023
Тип публикации:
Статья
УДК:519.633
Образец цитирования:
О. А. Нефедова, Л. Ф. Спевак, А. Л. Казаков, Ли Минг-Гонг, “Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности”, Компьютерные исследования и моделирование, 15:6 (2023), 1449–1467
\RBibitem{NefSpeKaz23}
\by О.~А.~Нефедова, Л.~Ф.~Спевак, А.~Л.~Казаков, Ли~Минг-Гонг
\paper Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
\jour Компьютерные исследования и моделирование
\yr 2023
\vol 15
\issue 6
\pages 1449--1467
\mathnet{http://mi.mathnet.ru/crm1128}
\crossref{https://doi.org/10.20537/2076-7633-2023-15-6-1449-1467}