Компьютерные исследования и моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерные исследования и моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерные исследования и моделирование, 2023, том 15, выпуск 2, страницы 369–379
DOI: https://doi.org/10.20537/2076-7633-2023-15-2-369-379
(Mi crm1065)
 

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

Experimental comparison of PageRank vector calculation algorithms
[Экспериментальное сравнение алгоритмов поиска вектора PageRank]

D. A. Skachkov, S. I. Gladyshev, A. M. Raigorodskii

Moscow Institute of Physics and Technology, MIPT, 1a/1 Kerchenskaya st., Moscow 117303, Russia
Список литературы:
Аннотация: Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса–Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса–Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса–Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.
Ключевые слова: Григориадис–Хачиян, Markov chain Monte Carlo, PageRank.
Финансовая поддержка Номер гранта
Российский научный фонд 21-71-30005
Исследование выполнено за счет гранта Российского научного фонда (проект № 21-71-30005), https://rscf.ru/project/21-71-30005/.
Поступила в редакцию: 19.02.2023
Принята в печать: 23.02.2023
Тип публикации: Статья
УДК: 519.8
Язык публикации: английский
Образец цитирования: D. A. Skachkov, S. I. Gladyshev, A. M. Raigorodskii, “Experimental comparison of PageRank vector calculation algorithms”, Компьютерные исследования и моделирование, 15:2 (2023), 369–379
Цитирование в формате AMSBIB
\RBibitem{SkaGlaRai23}
\by D.~A.~Skachkov, S.~I.~Gladyshev, A.~M.~Raigorodskii
\paper Experimental comparison of PageRank vector calculation algorithms
\jour Компьютерные исследования и моделирование
\yr 2023
\vol 15
\issue 2
\pages 369--379
\mathnet{http://mi.mathnet.ru/crm1065}
\crossref{https://doi.org/10.20537/2076-7633-2023-15-2-369-379}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/crm1065
  • https://www.mathnet.ru/rus/crm/v15/i2/p369
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерные исследования и моделирование
    Статистика просмотров:
    Страница аннотации:96
    PDF полного текста:49
    Список литературы:15
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024