|
МОДЕЛИ ЭКОНОМИЧЕСКИХ И СОЦИАЛЬНЫХ СИСТЕМ
Гипергеометрические функции в модели общего равновесия многосекторной экономики с монополистической конкуренцией
В. М. Гончаренкоa, А. Б. Шаповалba a Национальный исследовательский университет «Высшая школа экономики»,
Россия, 101000, г. Москва, ул. Мясницкая, д. 20
b Лаборатория исследования социальных отношений и многообразия общества
Российской экономической школы,
Россия, 143026, г. Москва, ул. Новая, д. 100a
Аннотация:
В статье показано, что базовые свойства некоторых моделей монополистической конкуренции описываются с помощью семейств гипергеометрических функций. Результаты получены построением модели общего равновесия в многосекторной экономике, производящей дифференцированное благо в $n$ высокотехнологичных секторах, в которых однопродуктовые фирмы конкурируют монополистически, используя одинаковые технологии. Однородный (традиционный) сектор характеризуется совершенной конкуренцией. Работники мотивированы найти работу в высокотехнологичных секторах, так как заработная плата там выше, однако рискуют остаться безработными. Безработица сохраняется в равновесии за счет несовершенства рынка труда. Заработная плата устанавливается фирмами в высокотехнологичных секторах в результате переговоров с работниками. Предполагается, что индивиды однородны как потребители, обладая одинаковыми предпочтениями, которые задаются сепарабельной функцией полезности общего вида. В статье найдены условия, при которых общее равновесие в построенной модели существует и единственно. Условия сформулированы в терминах эластичности замещения $\mathfrak{S}$ между разновидностями дифференцированного блага, которая усреднена по всем потребителям. Найденное равновесие симметрично относительно разновидностей дифференцированного блага. Равновесные переменные представимы в виде неявных функций, свойства которых связаны с введенной авторами эластичностью $\mathfrak{S}$. Полное аналитическое описание равновесных переменных возможно для известных частных случаев функции полезности потребителей, например в случае степенных предпочтений, которые некорректно описывают отклик экономики на изменение размера рынков. Чтобы упростить возникающие неявные функции, мы вводим функции полезности, заданные двумя однопараметрическими семействами гипергеометрических функций. Одно из семейств описывает проконкурентный, а другое — антиконкурентный отклик цен на увеличение размера экономики. Изменение параметра каждого из семейств соответствует перебору всех допустимых значений эластичности $\mathfrak{S}$. В этом смысле гипергеометрические функции исчерпывают естественные функции полезности. Установлено, что с увеличением эластичности замещения между разновидностями дифференцированного блага разница между высокотехнологичным и однородным секторами стирается. Показано, что при большом размере экономики индивиды в равновесии потребляют малое количество каждого товара, как и в случае степенных предпочтений. Именно это обстоятельство позволяет приблизить используемые гипергеометрические функции суммой степенных функций в окрестности равновесных значений аргумента. Таким образом, переход от степенных функций полезности к гипергеометрическим, которые аппроксимируются суммой двух степенных функций, с одной стороны, сохраняет все возможности настройки параметров, а с другой — позволяет полностью описать эффекты, связанные с изменением размера секторов экономики.
Ключевые слова:
гипергеометрическая функция, монополистическая конкуренция, общая функция полезности, эластичность замещения.
Поступила в редакцию: 16.06.2017 Исправленный вариант: 17.09.2017 Принята в печать: 20.09.2017
Образец цитирования:
В. М. Гончаренко, А. Б. Шаповал, “Гипергеометрические функции в модели общего равновесия многосекторной экономики с монополистической конкуренцией”, Компьютерные исследования и моделирование, 9:5 (2017), 825–836
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm102 https://www.mathnet.ru/rus/crm/v9/i5/p825
|
Статистика просмотров: |
Страница аннотации: | 209 | PDF полного текста: | 79 | Список литературы: | 38 |
|