|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ
Rice growth vegetation index 2 for improving estimation of rice plant phenology in costal ecosystems
K. Choudharyab, W. Shia, Y. Dongac a Department of Land Surveying and Geo-informatics, Smart Cities Research Institute, The Hong Kong Polytechnic University, Hong Kong
b Samara National Research University, Moskovskoye Shosse 34, Samara, 443086, Russia
c Institute of Geophysics & Geomatics, China University of Geoscience, Wuhan, PR China
Аннотация:
Crop growth is one of the most important parameters of a crop and its knowledge before harvest is essential to help farmers, scientists, governments and agribusiness. This paper provides a novel demonstration of the use of freely available Sentinel-2 data to estimate rice crop growth in a single year. Sentinel 2 data provides frequent and consistent information to facilitate coastal monitoring from field scales. The aims of this study were to modify the rice growth vegetation index to improve rice growth phenology in the coastal areas. The rice growth vegetation index 2 is the best vegetation index, compared with 11 vegetation indices, plant height and biomass. The results demonstrate that the coefficient of rice growth vegetation index 2 was 0.83, has the highest correlation with plant height. Rice growth vegetation index 2 is more appropriate for enhancing and obtaining rice phenology information. This study analyses the best spectral vegetation indices for estimating rice growth.
Ключевые слова:
crop growth, spectral indices, phenology, rice growth vegetation index 2.
Поступила в редакцию: 29.10.2020 Принята в печать: 25.02.2021
Образец цитирования:
K. Choudhary, W. Shi, Y. Dong
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/co927
|
|