|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ
Adaptive color space model based on dominant colors for image and video compression performance improvement
S. Madenda, A. Darmayantie Computer Engineering Department, Gunadarma University, Jl. Margonda Raya. No. 100, Depok – Jawa Barat, Indonesia
Аннотация:
This paper describes the use of some color spaces in JPEG image compression algorithm and their impact in terms of image quality and compression ratio, and then proposes adaptive color space models (ACSM) to improve the performance of lossy image compression algorithm. The proposed ACSM consists of, dominant color analysis algorithm and $YCoCg$ color space family. The $YCoCg$ color space family is composed of three color spaces, which are $YCcCr, YCpCg$ and $YCyCb$. The dominant colors analysis algorithm is developed which enables to automatically select one of the three color space models based on the suitability of the dominant colors contained in an image. The experimental results using sixty test images, which have varying colors, shapes and textures, show that the proposed adaptive color space model provides improved performance of 3 % to 10 % better than $YCbCr, YDbDr, YCoCg$ and $YCgCo-R$ color spaces family. In addition, the $YCoCg$ color space family is a discrete transformation so its digital electronic implementation requires only two adders and two subtractors, both for forward and inverse conversions.
Ключевые слова:
colors dominant analysis, adaptive color space, image compression, image quality, compression ratio.
Поступила в редакцию: 02.07.2020 Принята в печать: 16.02.2021
Образец цитирования:
S. Madenda, A. Darmayantie, “Adaptive color space model based on dominant colors for image and video compression performance improvement”, Компьютерная оптика, 45:3 (2021), 405–417
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/co924 https://www.mathnet.ru/rus/co/v45/i3/p405
|
|