Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2021, том 45, выпуск 1, статья опубликована в англоязычной версии журнала
DOI: https://doi.org/10.18287/2412-6179-CO-752
(Mi co883)
 

Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)

INTERNATIONAL CONFERENCE ON MACHINE VISION

A generalization of Otsu method for linear separation of two unbalanced classes in document image binarization

E. I. Ershova, S. A. Korchagina, V. V. Kokhanba, P. V. Bezmaternykhcb

a Institute for Information Transmission Problems, RAS, 127051, Moscow, Bolshoy Karetny per., 19, str. 1
b Smart Engines Service LLC, Moscow, Russia, 117312, pr. 60-lettya Oktyabrya, 9
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia, 117312, pr. 60-lettya Oktyabrya, 9
Список литературы:
Аннотация: The classical Otsu method is a common tool in document image binarization. Often, two classes, text and background, are imbalanced, which means that the assumption of the classical Otsu method is not met. In this work, we considered the imbalanced pixel classes of background and text: weights of two classes are different, but variances are the same. We experimentally demonstrated that the employment of a criterion that takes into account the imbalance of the classes' weights, allows attaining higher binarization accuracy. We described the generalization of the criteria for a two-parametric model, for which an algorithm for the optimal linear separation search via fast linear clustering was proposed. We also demonstrated that the two-parametric model with the proposed separation allows increasing the image binarization accuracy for the documents with a complex background or spots.
Ключевые слова: threshold binarization, Otsu method, optimal linear classification, historical document image binarization.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 19-29-09066 а
18-07-01387 а
This research was partially supported by the Russian Foundation for Basic Research No. 19-29-09066 and 18-07-01387.
Поступила в редакцию: 14.05.2020
Принята в печать: 26.11.2020
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: E. I. Ershov, S. A. Korchagin, V. V. Kokhan, P. V. Bezmaternykh
Цитирование в формате AMSBIB
\RBibitem{ErsKorKok21}
\by E.~I.~Ershov, S.~A.~Korchagin, V.~V.~Kokhan, P.~V.~Bezmaternykh
\mathnet{http://mi.mathnet.ru/co883}
\crossref{https://doi.org/10.18287/2412-6179-CO-752}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co883
  • Эта публикация цитируется в следующих 15 статьяx:
    1. Darya Nikolaevna Shibaeva, Roman Pavlovich Voronin, Alena Arkadievna Kompanchenko, Denis Olegovich Volkov, Danil Alekseevich Asanovich, Victor Vladimirovich Bulatov, “Hardware and Software Solutions for the Generation of a Database of HSV-Color Characteristics for the Main Ores and Rocks of the Khibiny Massif”, Minerals, 14:2 (2024), 186  crossref
    2. Alexander Egorov, Nataly Krupenina, Lyubov Tyndykar, PROCEEDINGS OF THE IV INTERNATIONAL CONFERENCE ON MODERNIZATION, INNOVATIONS, PROGRESS: Advanced Technologies in Material Science, Mechanical and Automation Engineering: MIP: Engineering-IV-2022, 3021, PROCEEDINGS OF THE IV INTERNATIONAL CONFERENCE ON MODERNIZATION, INNOVATIONS, PROGRESS: Advanced Technologies in Material Science, Mechanical and Automation Engineering: MIP: Engineering-IV-2022, 2024, 040020  crossref
    3. jun yan, ji liang yi, Chun-Ping Liu, Liang Xiao, Fifteenth International Conference on Graphics and Image Processing (ICGIP 2023), 2024, 46  crossref
    4. Marwah Al-Ogaidi, Ali A. Al-Temeemy, “Biospeckle techniques for evaluating the radial growth rate of a fungal colony”, Appl. Opt., 63:33 (2024), 8483  crossref
    5. Artemii Mametev, Alexander Pavin, 2024 International Conference on Ocean Studies (ICOS), 2024, 053  crossref
    6. Dongjin Xu, Junting Wang, Zhiwen Li, Changheng Li, Yukai Guo, Xuyi Qiao, Yong Wang, “Automated Particle Size and Shape Determination Methods: Application to Proppant Optimization”, Processes, 13:1 (2024), 21  crossref
    7. Karol Struniawski, Ryszard Kozera, Paweł Trzciński, Agnieszka Marasek-Ciołakowska, Lidia Sas-Paszt, “Extreme learning machine for identifying soil-dwelling microorganisms cultivated on agar media”, Sci Rep, 14:1 (2024)  crossref
    8. David Asatryan, Mariam Haroutunian, Grigor Sazhumyan, Alexander Kupriyanov, Rustam Paringer, Dmitriy Kirsh, 2023 IX International Conference on Information Technology and Nanotechnology (ITNT), 2023, 1  crossref
    9. P. V. Bezmaternykh, D. P. Nikolaev, V. L. Arlazarov, “High-Performance Digital Image Processing”, Pattern Recognit. Image Anal., 33:4 (2023), 743  crossref
    10. Aleksandr M. Sinitca, Airat R. Kayumov, Pavel V. Zelenikhin, Andrey G. Porfiriev, Dmitrii I. Kaplun, Mikhail I. Bogachev, “Segmentation of patchy areas in biomedical images based on local edge density estimation”, Biomedical Signal Processing and Control, 79 (2023), 104189  crossref
    11. Yu Li, Tianlong Shao, Hao Wang, Xiaobo Xie, Di Fang, Dalin Zhang, Fifth International Conference on Mechatronics and Computer Technology Engineering (MCTE 2022), 2022, 236  crossref
    12. V.V. Arlazarov, E.I. Andreeva, K.B. Bulatov, D.P. Nikolaev, O.O. Petrova, B.I. Savelev, O.A. Slavin, “Document image analysis and recognition: a survey”, Computer Optics, 46:4 (2022)  crossref
    13. Xiao Li, Sagheer Abbas, “Design and Realization of Computer Network Virtual Experiment Economic Teaching Platform Based on Mathematical Image and Signal Processing”, Mathematical Problems in Engineering, 2022 (2022), 1  crossref
    14. Lukas Kopecky, Michal Dobrovolny, Antonin Fuchs, Ali Selamat, Ondrej Krejcar, Lecture Notes in Computer Science, 13501, Computational Collective Intelligence, 2022, 82  crossref
    15. Yuchun He, Dezhi Liu, Yong Zeng, Qian Lu, Suheng Yao, Yuxin Yuan, “Research on the Recognition Method of the Axle End Mark of a Train Wheelset Based on Machine Vision”, Int J Comput Intell Syst, 15:1 (2022)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:93
    PDF полного текста:54
    Список литературы:25
     
      Обратная связь:
    math-net2025_03@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025