Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2019, том 43, выпуск 4, страницы 632–646
DOI: https://doi.org/10.18287/2412-6179-2019-43-4-632-646
(Mi co687)
 

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Analysis of a robust edge detection system in different color spaces using color and depth images

S. Mousavia, V. Lyashenkob, V. Surya Prasathc

a Department of Computer Engineering, Faculty of Engineering, Bu Ali Sina University, Hamadan, Iran
b Department of Informatics (INF), Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
c Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229 USA
Список литературы:
Аннотация: Edge detection is very important technique to reveal significant areas in the digital image, which could aids the feature extraction techniques. In fact it is possible to remove un-necessary parts from image, using edge detection. A lot of edge detection techniques has been made already, but we propose a robust evolutionary based system to extract the vital parts of the image. System is based on a lot of pre and post-processing techniques such as filters and morphological operations, and applying modified Ant Colony Optimization edge detection method to the image. The main goal is to test the system on different color spaces, and calculate the system’s performance. Another novel aspect of the research is using depth images along with color ones, which depth data is acquired by Kinect V.2 in validation part, to understand edge detection concept better in depth data. System is going to be tested with 10 benchmark test images for color and 5 images for depth format, and validate using 7 Image Quality Assessment factors such as Peak Signal-to-Noise Ratio, Mean Squared Error, Structural Similarity and more (mostly related to edges) for prove, in different color spaces and compared with other famous edge detection methods in same condition. Also for evaluating the robustness of the system, some types of noises such as Gaussian, Salt and pepper, Poisson and Speckle are added to images, to shows proposed system power in any condition. The goal is reaching to best edges possible and to do this, more computation is needed, which increases run time computation just a bit more. But with today’s systems this time is decreased to minimum, which is worth it to make such a system. Acquired results are so promising and satisfactory in compare with other methods available in validation section of the paper.
Ключевые слова: Edge detection, ant colony optimization (ACO), color spaces, depth image, kinect V.2, image quality assessment (IQA), image noises.
Поступила в редакцию: 02.09.2018
Принята в печать: 19.04.2019
Тип публикации: Статья
Образец цитирования: S. Mousavi, В. Ляшенко, V. Surya Prasath, “Analysis of a robust edge detection system in different color spaces using color and depth images”, Компьютерная оптика, 43:4 (2019), 632–646
Цитирование в формате AMSBIB
\RBibitem{MouLyaSur19}
\by S.~Mousavi, В.~Ляшенко, V.~Surya Prasath
\paper Analysis of a robust edge detection system in different color spaces using color and depth images
\jour Компьютерная оптика
\yr 2019
\vol 43
\issue 4
\pages 632--646
\mathnet{http://mi.mathnet.ru/co687}
\crossref{https://doi.org/10.18287/2412-6179-2019-43-4-632-646}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co687
  • https://www.mathnet.ru/rus/co/v43/i4/p632
  • Эта публикация цитируется в следующих 7 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:158
    PDF полного текста:97
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024