Loading [MathJax]/jax/output/SVG/config.js
Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2019, том 43, выпуск 1, страницы 99–104
DOI: https://doi.org/10.18287/2412-6179-2019-43-1-99-104
(Mi co609)
 

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

A solution method for image distortion correction model based on bilinear interpolation

J. Li, J. Su, X. Zeng

College of Information Science & Engineering, Hunan International Economics University, Changsha 410205, China
Список литературы:
Аннотация: In the process of the image generation, because the imaging system itself has differences in terms of nonlinear or cameraman perspective, the generated image will face the geometric distortion. Image distortion in general is also a kind of image degradation, which needs the geometric transform to correct each pixel position of the distorted images, so as to regain the original spatial relationships between pixels and the original grey value relation, and which is also one of important steps of image processing. From the point of view of the digital image processing, the distortion correction is actually a process of image restoration for a degraded image. In image processing, in terms of the image quality improvement and correction technology, namely the image restoration, with the wide expansion of digital image distortion correction processing applied, the processing technology of the image restoration has also become a research hotspot. In view of the image distortion issue, this paper puts forward the image distortion correction algorithm based on two-step and one-dimensional linear gray level interpolation to reduce the computation complexity of the bilinear interpolation method, and divide the distorted image into multiple quadrilaterals, and the area of the quadrilateral is associated with the distortion degree of the image in the given region, and express the region distortion of each quadrilateral with the bilinear model, thus determining parameters of bilinear model according to the position of the quadrilateral vertex in the target image and the distorted image. Experiments show that such algorithm in this paper can meet the requirements of distortion correction of most lenses, which can accurately extract the distorted edge of the image, thus making the corrected image closer to the ideal image.
Ключевые слова: image distortion, bilinear interpolation, correction model.
Финансовая поддержка Номер гранта
Hunan education department 16C0905
Hunan education department 17C0896
Поступила в редакцию: 26.01.2018
Принята в печать: 09.12.2018
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: J. Li, J. Su, X. Zeng, “A solution method for image distortion correction model based on bilinear interpolation”, Компьютерная оптика, 43:1 (2019), 99–104
Цитирование в формате AMSBIB
\RBibitem{LiSuZen19}
\by J.~Li, J.~Su, X.~Zeng
\paper A solution method for image distortion correction model based on bilinear interpolation
\jour Компьютерная оптика
\yr 2019
\vol 43
\issue 1
\pages 99--104
\mathnet{http://mi.mathnet.ru/co609}
\crossref{https://doi.org/10.18287/2412-6179-2019-43-1-99-104}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co609
  • https://www.mathnet.ru/rus/co/v43/i1/p99
  • Эта публикация цитируется в следующих 11 статьяx:
    1. Ashraf A.A. Beshr, Hossam El-Din Fawzy, Ehab A.A. Eldin, Jong Wan Hu, Fathi A. Abdelmgeed, “Monitoring of the post-tensile structures camber using the terrestrial close-range photogrammetry”, Optics & Laser Technology, 171 (2024), 110285  crossref
    2. Dong Hyuk Heo, Sung Ho Park, Soon Ju Kang, “Resource-constrained edge-based deep learning for real-time person-identification using foot-pad”, Engineering Applications of Artificial Intelligence, 138 (2024), 109290  crossref
    3. Yundong 云东 Tang 汤, Ming 鸣 Chen 陈, Rodolfo C.C. Flesch, Tao 涛 Jin 金, “Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia”, Chinese Phys. B, 32:9 (2023), 094401  crossref
    4. Hyunpil Boo, Yoo Seung Lee, Hangbo Yang, Brian Matthews, Tom G. Lee, Chee Wei Wong, “Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses”, Sci Rep, 12:1 (2022)  crossref
    5. V.L. Zhbanova, I.V. Yakimenko, Proceedings of the 32nd International Conference on Computer Graphics and Vision, 2022, 528  crossref
    6. Esraa Khalid Ahmed Alobaydi, Omar Muayad Abdullah, 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM), 2022, 347  crossref
    7. Kuo-Ching Hung, Meng-Chun Lin, Sheng-Fuu Lin, “A Novel Power-Saving Reversing Camera System with Artificial Intelligence Object Detection”, Electronics, 11:2 (2022), 282  crossref
    8. Zhemin Zhuang, Wanli Ding, Shuxin Zhuang, Alex Noel Joseph Raj, Jinhong Wang, Wang Zhou, Chuliang Wei, “Tumor classification in automated breast ultrasound (ABUS) based on a modified extracting feature network”, Computerized Medical Imaging and Graphics, 90 (2021), 101925  crossref
    9. Igor A. Kudinov, Mikhail B. Nikiforov, Ivan S. Kholopov, 2021 International Conference on Information Technology and Nanotechnology (ITNT), 2021, 1  crossref
    10. И. А. Кудинов, М. Б. Никифоров, И. С. Холопов, “Стратегии формирования панорамного видеоизображения без учёта информации о сюжетных соответствиях в мультиспектральных системах с распределённой апертурой”, Компьютерная оптика, 45:4 (2021), 589–599  mathnet  crossref [I. A. Kudinov, M. B. Nikiforov, I. S. Kholopov, “Strategies for generating panoramic video images without information about scene correspondences for multispectral distributed aperture systems”, Computer Optics, 45:4 (2021), 589–599  mathnet]
    11. A V Ivaschenko, A A Stolbova, D N Krupin, A V Krivosheev, P V Sitnikov, O Ja Kravets, “Semantic analysis implementation in engineering enterprise content management systems”, IOP Conf. Ser.: Mater. Sci. Eng., 862:4 (2020), 042016  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:147
    PDF полного текста:212
    Список литературы:27
     
      Обратная связь:
    math-net2025_01@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025