Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2018, том 42, выпуск 6, страницы 1035–1045
DOI: https://doi.org/10.18287/2412-6179-2018-42-6-1035-1045
(Mi co589)
 

Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performanc

M. Booriab, R. A. Paringerac, K. Choudharyda, A. V. Kupriyanovca

a Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34
b American Sentinel University, Colorado, USA
c IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia
d The Hong Kong Polytechnic University, Hong Kong
Список литературы:
Аннотация: The main aim of this research work is to compare k-nearest neighbor algorithm (KNN) supervised classification with migrating means clustering unsupervised classification (MMC) method on the performance of hyperspectral and multispectral data for spectral land cover classes and develop their spectral library in Samara, Russia. Accuracy assessment of the derived thematic maps was based on the analysis of the classification confusion matrix statistics computed for each classified map, using for consistency the same set of validation points. We were analyzed and compared Earth Observing-1 (EO-1) Hyperion hyperspectral data to Landsat 8 Operational Land Imager (OLI) and Advance Land Imager (ALI) multispectral data. Hyperspectral imagers, currently available on airborne platforms, provide increased spectral resolution over existing space based sensors that can document detailed information on the distribution of land cover classes, sometimes species level. Results indicate that KNN (95, 94, 88 overall accuracy and .91, .89, .85 kappa coefficient for Hyp, ALI, OLI respectively) shows better results than unsupervised classification (93, 90, 84 overall accuracy and .89, .87, .81 kappa coefficient for Hyp, ALI, OLI respectively). Development of spectral library for land cover classes is a key component needed to facilitate advance analytical techniques to monitor land cover changes. Different land cover classes in Samara were sampled to create a common spectral library for mapping landscape from remotely sensed data. The development of these libraries provides a physical basis for interpretation that is less subject to conditions of specific data sets, to facilitate a global approach to the application of hyperspectral imagers to mapping landscape. In addition, it is demonstrated that the hyperspectral satellite image provides more accurate classification results than those extracted from the multispectral satellite image. The higher classification accuracy by KNN supervised was attributed principally to the ability of this classifier to identify optimal separating classes with low generalization error, thus producing the best possible classes’ separation.
Ключевые слова: hyperspectral; multispectral; satellite data; land cover classification; remote sensing; supervised and unsupervised classification; spectral library.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 16-41-630761 р_а
16-29-11698 офи-м
17-01-00972 а
Министерство образования и науки Российской Федерации
This work was partially supported by the Ministry of education and science of the Russian Federation; by the Russian Foundation for Basic Research grants (# 16-41-630761; # 16-29-11698, # 17-01-00972).
Поступила в редакцию: 13.06.2018
Принята в печать: 20.11.2018
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: M. Boori, R. A. Paringer, K. Choudhary, A. V. Kupriyanov, “Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performanc”, Компьютерная оптика, 42:6 (2018), 1035–1045
Цитирование в формате AMSBIB
\RBibitem{BooParCho18}
\by M.~Boori, R.~A.~Paringer, K.~Choudhary, A.~V.~Kupriyanov
\paper Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performanc
\jour Компьютерная оптика
\yr 2018
\vol 42
\issue 6
\pages 1035--1045
\mathnet{http://mi.mathnet.ru/co589}
\crossref{https://doi.org/10.18287/2412-6179-2018-42-6-1035-1045}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co589
  • https://www.mathnet.ru/rus/co/v42/i6/p1035
  • Эта публикация цитируется в следующих 16 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:202
    PDF полного текста:115
    Список литературы:24
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024