Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2018, том 42, выпуск 4, страницы 637–656
DOI: https://doi.org/10.18287/2412-6159-2018-42-4-637-656
(Mi co546)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Методы двумерной проекции цифровых изображений в собственные подпространства: особенности реализации и применение

Г. А. Кухарев, Н. Л. Щеголева

Федеральное государственное автономное образовательное учреждение высшего образования«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)», Санкт-Петербург, Россия
Список литературы:
Аннотация: Рассматриваются алгоритмы проекции цифровых изображений в собственные подпространства в рамках линейных методов PCA, LDA, PLS и CCА. Приводится история развития этих методов за последние 100 лет на фоне появления новых областей их применения и меняющихся в связи с этим требований к ним. Показано, что развитие было инициировано четырьмя основными требованиями, вытекающими из современных задач и практики цифровой обработки изображений и, в первую очередь, изображений лиц. Первым является требование использования методов PCA, LDA, PLS и CCА в условиях как малой, так и чрезвычайно большой выборки изображений лиц в исходных наборах. Второе требование связано с критерием, определяющим собственный базис, который должен обеспечить, например, минимум ошибки аппроксимации изображений лиц, улучшение кластеризации в собственном подпространстве или максимум корреляции (ковариации) между наборами данных в подпространстве. Третье – связано с возможностью приложения рассматриваемых методов к задачам обработки двух и более наборов изображений с различных сенсорных источников или нескольких наборов любых числовых матриц. Именно эти три требования обусловили появление, развитие и применение методов двумерной проекции в собственные подпространства – 2DPCA, 2DLDA, 2DPLS и 2DCCА. В статье рассмотрены несколько основных ветвей алгоритмической реализации этих методов (итерационные, не итерационные, на основе SVD и т.д.), оценены их достоинства и недостатки, а также показаны примеры их использования на практике. Наконец, четвертое требование – возможность реализации двумерных проекций изображений лиц (или других числовых матриц) непосредственно в слоях сверточных нейронных сетей (СNN/Deep NN) и/или интеграции их функций в состав NN отдельными блоками. В настоящей статье обсуждается это требование и рассматриваются примеры решений. Приводятся оценки вычислительной сложности для представленных алгоритмов и примеры решения конкретных задач обработки изображений.
Ключевые слова: наборы изображений лиц и числовых матриц, собственный базис и собственные подпространства, анализ главных компонент (PCA), линейный дискриминантный анализ (LDA), частичный метод наименьших квадратов (PLS), канонический корреляционный анализ (CCA), преобразование Карунена–Лоэва (KLT), 2DPCA/2DKLT, 2DPLS/2DKLT, 2DCCA/2DKLT, CNN, Deep NN.
Поступила в редакцию: 30.11.2017
Принята в печать: 17.07.2018
Тип публикации: Статья
Образец цитирования: Г. А. Кухарев, Н. Л. Щеголева, “Методы двумерной проекции цифровых изображений в собственные подпространства: особенности реализации и применение”, Компьютерная оптика, 42:4 (2018), 637–656
Цитирование в формате AMSBIB
\RBibitem{KukShc18}
\by Г.~А.~Кухарев, Н.~Л.~Щеголева
\paper Методы двумерной проекции цифровых изображений в собственные подпространства: особенности реализации и применение
\jour Компьютерная оптика
\yr 2018
\vol 42
\issue 4
\pages 637--656
\mathnet{http://mi.mathnet.ru/co546}
\crossref{https://doi.org/10.18287/2412-6159-2018-42-4-637-656}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co546
  • https://www.mathnet.ru/rus/co/v42/i4/p637
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:177
    PDF полного текста:89
    Список литературы:29
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024