|
Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)
ДИФРАКЦИОННАЯ ОПТИКА, ОПТИЧЕСКИЕ ТЕХНОЛОГИИ
Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object
K. M. Bulatova, Yu. V. Mantrovaa, A. A. Bykovab, M. Gaponovac, P. V. Zininad, A. S. Machikhinab, I. A. Trojane, V. I. Batshevac, I. B. Kutuzaa a Scientific-Technological Center of Unique Instrumentation, Moscow, Russia
b Moscow Power Engineering University, Moscow, Russia
c Bauman Moscow State Technical University, Moscow, Russia
d Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, USA
e FSRC Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
Аннотация:
In this paper, we demonstrate that combining a laser heating (LH) system with a tandem acousto-optical tunable filter (TAOTF) allows us to measure the temperature distribution (TD) across a laser-heated microscopic specimen. Spectral image processing is based on one-dimensional (1D) non-linear least squares fitting of the Planck radiation function. It is applied for determining the temperature T at each point $(x, y)$ of the specimen surface. It is shown that spectral image processing using the 1D non-linear least squares fitting allows measurement of the TD of the laser-heated microscopic specimen with higher precision and stability than those of the conventional linear least-squares fitting of the Wien approximation of Planck’s law.
Ключевые слова:
laser heating, diamond anvil cell, temperature measurement, acousto-optical tunable filter, spectral imaging.
Поступила в редакцию: 03.10.2017 Принята в печать: 08.11.2017
Образец цитирования:
K. M. Bulatov, Yu. V. Mantrova, A. A. Bykov, M. Gaponov, P. V. Zinin, A. S. Machikhin, I. A. Trojan, V. I. Batshev, I. B. Kutuza, “Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object”, Компьютерная оптика, 41:6 (2017), 864–868
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/co459 https://www.mathnet.ru/rus/co/v41/i6/p864
|
|