Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2017, том 41, выпуск 4, страницы 552–558
DOI: https://doi.org/10.18287/2412-6179-2017-41-4-552-558
(Mi co419)
 

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

IMAGE PROCESSING, PATTERN RECOGNITION

Food vulnerability analysis in the central dry zone of Myanmar

M. Booriabc, K. Choudharya, R. A. Paringerda, M. Eversc

a Samara National Research University, Samara, Russia
b American Sentinel University, Denver, Colorado, USA
c Bonn University, Bonn, Germany
d Image Processing Systems Institute of the RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia
Список литературы:
Аннотация: The central dry zone of Myanmar is the most water stressed and also one of the most food insecure regions in the country. In the Dry Zone, the total population is 10.1 million people in 54 townships, in which approximately 43 % of people live below the poverty line and 40–50 % of the rural population is landless. Agriculture is the most important economic sector in Myanmar as it is essential for the national food security and a major source of livelihood of the people. In this region the adverse effects of climate change such as a late or early onset of the monsoon season, longer dry spells, erratic rainfall, increasing temperatures, heavy rains, stronger typhoons, extreme spatial-temporal variability of rainfall, high intensities, limited rainfall events in the growing season, heat stress, drought, flooding, sea water intrusion, land degradation, desertification, deforestation, and other natural disasters are believed to be major constraints to food security. Theses extreme climatic events are likely to increase in frequency and magnitude, leading to serious drought periods and extreme floods. Food insecurity is an important thing that must be reviewed because it affects the lives of many people. For food vulnerability, we use the following indicators: slope, precipitation, vegetation, soil, erosion, land degradation and harvest failure in ArcGIS software. The erosion is influenced by rainfall and slope, while land degradation is directly related to vegetation, drainage and soil. In the meantime, the harvest failure can be generated by rainfall and flood potential zones. The results show that around 45 % of the area studied comes under a very high erosion danger level, 70 % are in the average harvest failure zone, 59 % are in the intermediate land degradation area, and overall around 45 % of the studied area comes under the insecure food vulnerability zone. Our analysis shows that an increase in the alluvial farming by 1745.33 km$^2$ since 1988 has helped reduce the insecure food vulnerability. The food vulnerability map is also relevant to increased population and low income areas. This paper is helpful for identifying the areas of food needs in central dry zone of Myanmar.
Ключевые слова: food vulnerability, alluvial farming, remote sensing, GIS.
Финансовая поддержка Номер гранта
Российский научный фонд 14-31-00014
Поступила в редакцию: 28.04.2017
Принята в печать: 27.06.2017
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: M. Boori, K. Choudhary, R. A. Paringer, M. Evers, “Food vulnerability analysis in the central dry zone of Myanmar”, Компьютерная оптика, 41:4 (2017), 552–558
Цитирование в формате AMSBIB
\RBibitem{BooChoPar17}
\by M.~Boori, K.~Choudhary, R.~A.~Paringer, M.~Evers
\paper Food vulnerability analysis in the central dry zone of Myanmar
\jour Компьютерная оптика
\yr 2017
\vol 41
\issue 4
\pages 552--558
\mathnet{http://mi.mathnet.ru/co419}
\crossref{https://doi.org/10.18287/2412-6179-2017-41-4-552-558}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co419
  • https://www.mathnet.ru/rus/co/v41/i4/p552
  • Эта публикация цитируется в следующих 7 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:239
    PDF полного текста:59
    Список литературы:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024