|
ДИФРАКЦИОННАЯ ОПТИКА, ОПТИЧЕСКИЕ ТЕХНОЛОГИИ
Inverse scattering transform algorithm for the Manakov system
A. E. Chernyavsky, L. L. Frumin Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk
Аннотация:
A numerical algorithm is described for solving the inverse spectral scattering problem associated with the Manakov model of the vector nonlinear Schrödinger equation. This model of wave processes simultaneously considers dispersion, nonlinearity and polarization effects. It is in demand in nonlinear physical optics and is especially perspective for describing optical radiation propagation through the fiber communication lines. In the presented algorithm, the solution to the inverse scattering problem based on the inversion of a set of nested matrices of the discretized system of Gelfand–Levitan–Marchenko integral equations, using a block version of the Levinson-type Toeplitz bordering algorithm. Numerical tests carried out by comparing calculations with known exact analytical solutions confirm the stability and second order of accuracy of the proposed algorithm. We also give an example of the algorithm application to simulate the collision of a differently polarized pair of Manakov optical vector solitons.
Ключевые слова:
Manakov system, polarization, dispersion, inverse scattering problem, algorithm
Поступила в редакцию: 06.03.2023 Принята в печать: 23.07.2023
Образец цитирования:
A. E. Chernyavsky, L. L. Frumin, “Inverse scattering transform algorithm for the Manakov system”, Компьютерная оптика, 47:6 (2023), 856–862
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/co1188 https://www.mathnet.ru/rus/co/v47/i6/p856
|
Статистика просмотров: |
Страница аннотации: | 17 | PDF полного текста: | 10 |
|