Компьютерная оптика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2022, том 46, выпуск 2, страницы 308–316
DOI: https://doi.org/10.18287/2412-6179-CO-1023
(Mi co1019)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ

Метод идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления

Ю. Х. Ганееваa, Е. В. Мясниковab

a Самарский национальный исследовательский университет имени академика С. П. Королева
b Институт систем обработки изображений РАН - филиал ФНИЦ "Кристаллография и фотоника" РАН, Самара, Россия, г. Самара
Аннотация: Задача идентификации личности играет важную роль в обеспечении безопасности: информационной, общественной и др. В последнее время наиболее актуальными и перспективными являются биометрические методы идентификации личности. В статье представлено исследование метода идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления изображений. Представлено описание набора данных, используемого для реализации этапа сегментации с использованием сверточных нейронных сетей, а также предоставлен доступ к маскам сегментации всего набора данных. Предложен метод формирования признакового представления данных с использованием предварительно обученных сверточных нейронных сетей для решения задачи классификации радужной оболочки глаза. Проведен сравнительный анализ методов формирования признакового представления радужной оболочки глаза, включая классические подходы и нейросетевой подход. Проведен сравнительный анализ методов классификации, включая классические алгоритмы машинного обучения, а именно: метод опорных векторов, случайный лес, метод k-ближайших соседей. Результаты экспериментальных исследований показали высокое качество классификации при применении предложенного подхода.
Ключевые слова: радужная оболочка глаза, идентификация, сверточные нейронные сети, сегментация изображения, распознавание
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации
Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках госзадания ФНИЦ «Кристаллография и фотоника» РАН.
Поступила в редакцию: 10.08.2021
Принята в печать: 18.11.2021
Тип публикации: Статья
Образец цитирования: Ю. Х. Ганеева, Е. В. Мясников, “Метод идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления”, Компьютерная оптика, 46:2 (2022), 308–316
Цитирование в формате AMSBIB
\RBibitem{GanMya22}
\by Ю.~Х.~Ганеева, Е.~В.~Мясников
\paper Метод идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления
\jour Компьютерная оптика
\yr 2022
\vol 46
\issue 2
\pages 308--316
\mathnet{http://mi.mathnet.ru/co1019}
\crossref{https://doi.org/10.18287/2412-6179-CO-1023}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/co1019
  • https://www.mathnet.ru/rus/co/v46/i2/p308
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Компьютерная оптика
    Статистика просмотров:
    Страница аннотации:18
    PDF полного текста:8
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024