|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
ОБРАБОТКА ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ОБРАЗОВ
Vehicle wheel weld detection based on improved YOLO v4 algorithm
T. J. Liangab, W. G. Panab, H. Baoab, F. Panab a Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China
b College of Robotics, Beijing Union University, Beijing, China
Аннотация:
In recent years, vision-based object detection has made great progress across different fields. For instance, in the field of automobile manufacturing, welding detection is a key step of weld inspection in wheel production. The automatic detection and positioning of welded parts on wheels can improve the efficiency of wheel hub production. At present, there are few deep learning based methods to detect vehicle wheel welds. In this paper, a method based on YOLO v4 algorithm is proposed to detect vehicle wheel welds. The main contributions of the proposed method are the use of k-means to optimize anchor box size, a Distance-IoU loss to optimize the loss function of YOLO v4, and non-maximum suppression using Distance-IoU to eliminate redundant candidate bounding boxes. These steps improve detection accuracy. The experiments show that the improved methods can achieve high accuracy in vehicle wheel weld detection (4.92% points higher than the baseline model with respect to AP75 and 2.75% points higher with respect to AP50). We also evaluated the proposed method on the public KITTI dataset. The detection results show the improved method’s effectiveness.
Ключевые слова:
object detection, vehicle wheel weld, YOLO v4, DIoU
Поступила в редакцию: 05.03.2021 Принята в печать: 18.08.2021
Образец цитирования:
T. J. Liang, W. G. Pan, H. Bao, F. Pan, “Vehicle wheel weld detection based on improved YOLO v4 algorithm”, Компьютерная оптика, 46:2 (2022), 271–279
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/co1016 https://www.mathnet.ru/rus/co/v46/i2/p271
|
|