Loading [MathJax]/jax/output/SVG/config.js
Современная математика. Фундаментальные направления
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Публикационная этика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



СМФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Современная математика. Фундаментальные направления, 2024, том 70, выпуск 3, страницы 498–515
DOI: https://doi.org/10.22363/2413-3639-2024-70-3-498-515
(Mi cmfd554)
 

Об одной краевой задаче, связанной с внутренней флотацией

Д. О. Цветков

Крымский федеральный университет им. В. И. Вернадского, Симферополь, Россия
Список литературы:
Аннотация: Изучается задача о малых движениях системы из несмешивающихся идеальных жидкостей со свободной поверхностью, состоящей из двух областей: участка упругого льда и участка крошеного льда. Упругий лед моделируется упругой пластиной. Под крошеным льдом подразумеваем плавающие на свободной поверхности весомые частицы некоторого вещества. Предполагается также, что граница раздела слоев жидкости является весомой поверхностью. Используя метод ортогонального проектирования граничных условий и введения вспомогательных задач, исходную начально-краевую задачу сводим к равносильной задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. Получены условия, при которых существует сильное по времени решение начально-краевой задачи, описывающей эволюцию данной гидросистемы. Доказаны утверждения о структуре спектра задачи и о базисности системы собственных функций.
Ключевые слова: идеальная жидкость, свободная поверхность, раздел слоев жидкости, метод ортогонального проектирования, сильное решение, спектр.
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.98
Образец цитирования: Д. О. Цветков, “Об одной краевой задаче, связанной с внутренней флотацией”, СМФН, 70, № 3, Российский университет дружбы народов, М., 2024, 498–515
Цитирование в формате AMSBIB
\RBibitem{Tsv24}
\by Д.~О.~Цветков
\paper Об одной краевой задаче, связанной с внутренней флотацией
\serial СМФН
\yr 2024
\vol 70
\issue 3
\pages 498--515
\publ Российский университет дружбы народов
\publaddr М.
\mathnet{http://mi.mathnet.ru/cmfd554}
\crossref{https://doi.org/10.22363/2413-3639-2024-70-3-498-515}
\edn{https://elibrary.ru/NLGGDV}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cmfd554
  • https://www.mathnet.ru/rus/cmfd/v70/i3/p498
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Статистика просмотров:
    Страница аннотации:45
    PDF полного текста:13
    Список литературы:10
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025