|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Интегро-дифференциальные уравнения в банаховых пространствах и аналитические разрешающие семейства операторов
В. Е. Федоров, А. Д. Годова Челябинский государственный университет, Челябинск, Россия
Аннотация:
Исследуется класс уравнений в банаховых пространствах с интегро-дифференциальным оператором типа Римана—Лиувилля с операторнозначным ядром свертки. Исследованы свойства $k$-разрешающих операторов таких уравнений, определен класс $\mathcal A_{m,K,\chi}$ линейных замкнутых операторов, принадлежность которому необходима и в случае коммутирования оператора с ядром свертки достаточна для существования аналитических в секторе $k$-разрешающих семейств операторов исследуемого уравнения. При некоторых дополнительных условиях на ядро свертки доказаны теоремы об однозначной разрешимости неоднородного линейного уравнения рассматриваемого класса в случае непрерывной в норме графика оператора из уравнения или гельдеровой неоднородности. Доказана теорема о достаточных условиях на аддитивное возмущение оператора класса $\mathcal A_{m,K,\chi}$ для того, чтобы возмущенный оператор также принадлежал такому классу. Абстрактные результаты использованы при исследовании начально-краевых задач для системы уравнений в частных производных с несколькими дробными производными Римана—Лиувилля по времени разных порядков и для уравнения с дробной производной Прабхакара по времени.
Ключевые слова:
интегро-дифференциальные уравнения, банаховы пространства, оператор Римана—Лиувилля, однозначная разрешимость, дробные производные Римана—Лиувилля, дробная производная Прабхакара.
Образец цитирования:
В. Е. Федоров, А. Д. Годова, “Интегро-дифференциальные уравнения в банаховых пространствах и аналитические разрешающие семейства операторов”, СМФН, 69, № 1, Российский университет дружбы народов, М., 2023, 166–184
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cmfd494 https://www.mathnet.ru/rus/cmfd/v69/i1/p166
|
Статистика просмотров: |
Страница аннотации: | 82 | PDF полного текста: | 60 | Список литературы: | 17 |
|