|
Современная математика и ее приложения, 2015, том 99, статья опубликована в англоязычной версии журнала
(Mi cma484)
|
|
|
|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Categorical, homological, and homotopical properties of algebraic objects
T. Datuashvili Andrea Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
Аннотация:
This monograph is based on the doctoral dissertation of the author
defended in the Iv. Javakhishvili Tbilisi State University in 2006. It
begins by developing internal category and internal category cohomology
theories (equivalently, for crossed modules) in categories of groups with
operations. Further, the author presents properties of actions in
categories of interest, in particular, the existence of an actor in
specific algebraic categories. Moreover, the reader will be introduced to
a new type of algebras called noncommutative Leibniz–Poisson algebras,
with their properties and cohomology theory and the relationship of new
cohomologies with well-known cohomologies of underlying associative and
Leibniz algebras. The author defines and studies the category of groups
with an action on itself and solves two problems of J.-L. Loday.
Homotopical and categorical properties of chain functors category are also
examined.
Образец цитирования:
T. Datuashvili, “Categorical, homological, and homotopical properties of algebraic objects”, Journal of Mathematical Sciences, 225:3 (2017), 383–533
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cma484
|
Статистика просмотров: |
Страница аннотации: | 67 |
|