Chaos Solitons & Fractals
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Chaos Solitons & Fractals, 2014, том 59, страницы 59–81
DOI: https://doi.org/10.1016/j.chaos.2013.11.012
(Mi chsf1)
 

Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)

Integrability of and differential–algebraic structures for spatially 1D hydrodynamical systems of Riemann type

D. Blackmorea, Ya. A. Prikarpatskybc, N. N. Bogolyubov (Jr.)de, A. K. Prikarpatskif

a Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102-1982, United States
b Department of Applied Mathematics, Agrarian University of Krakow, Poland
c Institute of Mathematics of NAS, Kyiv, Ukraine
d Abdus Salam International Centre of Theoretical Physics, Trieste, Italy
e V.A. Steklov Mathematical Institute of RAS, Moscow, Russian Federation
f AGH University of Science and Technology, Craców 30059, Poland
Аннотация: A differential–algebraic approach to studying the Lax integrability of a generalized Riemann type hydrodynamic hierarchy is revisited and a new Lax representation is constructed. The related bi-Hamiltonian integrability and compatible Poissonian structures of this hierarchy are also investigated using gradient-holonomic and geometric methods.
The complete integrability of a new generalized Riemann hydrodynamic system is studied via a novel combination of symplectic and differential–algebraic tools. A compatible pair of polynomial Poissonian structures, a Lax representation and a related infinite hierarchy of conservation laws are obtained.
In addition, the differential–algebraic approach is used to prove the complete Lax integrability of the generalized Ostrovsky–Vakhnenko and a new Burgers type system, and special cases are studied using symplectic and gradient-holonomic tools. Compatible pairs of polynomial Poissonian structures, matrix Lax representations and infinite hierarchies of conservation laws are derived.
Финансовая поддержка Номер гранта
National Science Foundation CMMI-1029809
Scientific and Technological Research Council of Turkey (TÜBITAK) TUBITAK/NASU-110T558 Project
D.B. acknowledges the National Science Foundation (Grant CMMI-1029809), A.P. and Y.P. acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK/NASU-110T558 Project) for partial support of their research.
Поступила в редакцию: 09.02.2013
Принята в печать: 21.11.2013
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/chsf1
  • Эта публикация цитируется в следующих 13 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:117
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024