|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
О линейной независимости значений некоторых гипергеометрических функций над мнимым квадратичным полем
П. Л. Иванков Московский государственный технический университет имени Н. Э. Баумана (г. Москва)
Аннотация:
Основная трудность, с которой приходится иметь дело при исследовании арифметической природы значений обобщенных гипергеометрических функций с иррациональными параметрами, состоит в том, что общий наименьший знаменатель нескольких первых коэффициентов соответствующих степенных рядов растет слишком быстро с увеличением числа этих коэффициентов. Последнее обстоятельство делает невозможным использование известного в теории трансцендентных чисел метода Зигеля для проведения упомянутого исследования. Применение названного метода предполагает использование принципа Дирихле для построения функциональной линейной приближающей формы. Это построение является первым этапом длинного и сложного рассуждения, приводящего в конечном итоге к получению требуемого арифметического результата. Попытка применить принцип Дирихле в случае функций с иррациональными параметрами наталкивается на непреодолимые трудности из-за упомянутого выше слишком быстрого роста общего наименьшего знаменателя коэффициентов соответствующих рядов Тейлора. Вследствие этого в случае функций с иррациональными параметрами обычно применяют эффективное построение линейной приближающей формы (или совокупности таких форм при использовании совместных приближений). Коэффициенты построенной формы являются многочленами с алгебраическими коэффициентами. Для общего наименьшего знаменателя этих коэффициентов требуется затем получить приемлемую оценку сверху его абсолютной величины. Известные оценки такого рода нуждаются в некоторых случаях в уточнении. Это уточнение осуществляется с применением теории делимости в квадратичных полях; дополнительно используются сведения о распределении простых чисел в арифметической прогрессии.
В настоящей работе рассматривается один из вариантов эффективного построения совместных приближений для гипергеометрической функции общего вида и ее производных. Общий наименьший знаменатель коэффициентов многочленов, входящих в эти приближения, оценивается затем с помощью уточненного варианта соответствующей леммы. Все это позволяет получить новый результат об арифметической природе значений указанной функции в малой по абсолютной величине ненулевой точке мнимого квадратичного поля.
Ключевые слова:
гипергеометрическая функция, эффективная конструкция, линейная независимость, мнимое квадратичное поле.
Поступила в редакцию: 04.07.2019 Принята в печать: 20.12.2019
Образец цитирования:
П. Л. Иванков, “О линейной независимости значений некоторых гипергеометрических функций над мнимым квадратичным полем”, Чебышевский сб., 20:4 (2019), 158–169
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb842 https://www.mathnet.ru/rus/cheb/v20/i4/p158
|
Статистика просмотров: |
Страница аннотации: | 99 | PDF полного текста: | 15 | Список литературы: | 15 |
|