Чебышевский сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сборник, 2018, том 19, выпуск 3, страницы 95–108
DOI: https://doi.org/10.22405/2226-8383-2018-19-3-95-108
(Mi cheb682)
 

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

О моноиде квадратичных вычетов

Н. Н. Добровольскийab, А. О. Калининаc, М. Н. Добровольскийd, Н. М. Добровольскийb

a Тульский государственный университет
b Тульский государственный педагогический университет им. Л. Н. Толстого
c Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
d Геофизический центр РАН
Список литературы:
Аннотация: В работе изучается дзета-функция моноида квадратичных вычетов по простому модулю $p$. Моноид квадратичных вычетов задается равенством
$$ M_{p,2}=\left\{a\in\mathbb{N}\left| \left(\frac{a}{p}\right)=1\right.\right\}=\bigcup_{\nu=1}^{\frac{p-1}{2}}\left(r_\nu+p\mathbb{N}_0\right), $$
где $\mathbb{N}_0=\{0\}\bigcup\mathbb{N}$ и $r_1<r_2<\ldots<r_{\frac{p-1}{2}}$ — наименьшая положительная система квадратичных вычетов по модулю $p$, соответственно, $r_{\frac{p+1}{2}}<\ldots<r_{p-1}$ — наименьшая положительная система квадратичных невычетов по модулю $p$.
Множество простых элементов моноида $M_{p,2}$ состоит из множества простых чисел $\mathbb{P}_p^{(1)}$ и множества псевдопростых чисел $\mathbb{P}_p^{(2)}\cdot\mathbb{P}_p^{(2)}$:
$$ P(M_{p,2})=\mathbb{P}_p^{(1)}\bigcup\left(\mathbb{P}_p^{(2)}\cdot\mathbb{P}_p^{(2)}\right), $$
где множество простых чисел $\mathbb{P}$ разбивается на два бесконечных подмножества $\mathbb{P}_p^{(\nu)}$ $(\nu=1,2)$ и одноэлементное множество $\{p\}$:
$$ \mathbb{P}=\mathbb{P}_p^{(1)}\bigcup\mathbb{P}_p^{(2)}\bigcup\{p\}, \quad \mathbb{P}_p^{(\nu)}=\left\{q\in\mathbb{P}\left|\left(\frac{q}{p}\right)=3-2\nu\right.\right\} \quad (\nu=1,2). $$
Моноид $M_{p,2}$ разлагается в произведение двух взаимно простых моноидов $M_{p,2}=M_{p,2}^{(1)}\cdot$ $\cdot M_{p,2}^{(2)}$, где
$$ M_{p,2}^{(\nu)}=\left\{a\in M_{p,2}\left| a=\prod_{j=1}^{n}q_j^{\alpha_j}, \, q_j\in\mathbb{P}_p^{(\nu)} \right.\right\}, \quad \nu=1,2. $$
В статье изучаются свойства функции распределения простых элементов $\pi_{M_{p,2}^{(\nu)}}(x)$ для $\nu=1,2$. Отметим, что $\pi_{M_{p,2}}(x)=\pi_{M_{p,2}^{(1)}}(x)+\pi_{M_{p,2}^{(2)}}(x)$. Показано, что
$$ \pi_{M_{p,2}^{(1)}}(x)=\frac{1}{2}\mathrm{li} x+O\left(\frac{x^{\beta_1}}{2}+\frac{p-1}2xe^{-c_9\sqrt{\ln x}}\right) $$
и
$$ \pi_{M_{p,2}^{(2)}}(x)=\frac{x\ln\ln x}{2\ln x}+O\left(\frac{x}{(1-\beta_1)\ln{x}}\right), $$
где $\beta_1$ — исключительный ноль исключительного характера $\chi_1$ по модулю $p$.
В заключении рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования.
Ключевые слова: дзета-функция Римана, ряд Дирихле, дзета-функция моноида натуральных чисел, эйлерово произведение.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 16-41-710194_р_центр_а
Работа подготовлена по гранту РФФИ №16-41-710194_р_центр_а.
Поступила в редакцию: 30.06.2018
Принята в печать: 15.10.2018
Реферативные базы данных:
Тип публикации: Статья
УДК: 511.3
Образец цитирования: Н. Н. Добровольский, А. О. Калинина, М. Н. Добровольский, Н. М. Добровольский, “О моноиде квадратичных вычетов”, Чебышевский сб., 19:3 (2018), 95–108
Цитирование в формате AMSBIB
\RBibitem{DobKalDob18}
\by Н.~Н.~Добровольский, А.~О.~Калинина, М.~Н.~Добровольский, Н.~М.~Добровольский
\paper О моноиде квадратичных вычетов
\jour Чебышевский сб.
\yr 2018
\vol 19
\issue 3
\pages 95--108
\mathnet{http://mi.mathnet.ru/cheb682}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-95-108}
\elib{https://elibrary.ru/item.asp?id=39454391}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cheb682
  • https://www.mathnet.ru/rus/cheb/v19/i3/p95
  • Эта публикация цитируется в следующих 11 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:197
    PDF полного текста:50
    Список литературы:24
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024