|
Эта публикация цитируется в 4 научных статьях (всего в 5 статьях)
Классификация чисто-вещественных алгебраических иррациональностей
Н. М. Добровольскийab, Н. Н. Добровольскийab, Д. К. Соболевc, В. Н. Соболеваc a Тульский государственный университет
b Тульский государственный педагогический университет им. Л. Н. Толстого
c Московский педагогический государственный университет
Аннотация:
В работе предложена новая классификация чисто-вещественных алгебраических иррациональностей на основе их разложения в цепные дроби.
Показано, что для чисто-вещественных алгебраических иррациональностей $\alpha$ степени $n\ge2$, начиная с некоторого номера $m_0=m_0(\alpha)$, последовательность остаточных дробей $\alpha_m$ является последовательностью приведённых алгебраических иррациональностей.
Найдены рекуррентные формулы для нахождения минимальных многочленов остаточных дробей с помощью дробно-линейных преобразований. Композиция этих дробно-линейных преобразований является дробно-линейным преобразование, переводящем систему сопряжённых к алгебраической иррациональности $\alpha$ в систему сопряжённых к остаточной дроби, обладающую ярко выраженным эффектом концентрации около рациональной дроби $-\frac{Q_{m-2}}{Q_{m-1}}$.
Установлено, что последовательность минимальных многочленов для остаточных дробей образует последовательность многочленов с равными дискриминантами.
В работе доказываются предельные соотношения с коэффициентами минимального многочлена, связанные с эффектом концентрации сопряжённых чисел остаточной дроби.
В заключении поставлена проблема о структуре рационального сопряжённого спектра вещественного алгебраического иррационального числа $\alpha$ и о его предельных точках.
Библиография: 28 названий.
Ключевые слова:
минимальный многочлен, приведённая алгебраическая иррациональность, остаточные дроби, цепные дроби.
Поступила в редакцию: 02.03.2017 Принята в печать: 12.06.2017
Образец цитирования:
Н. М. Добровольский, Н. Н. Добровольский, Д. К. Соболев, В. Н. Соболева, “Классификация чисто-вещественных алгебраических иррациональностей”, Чебышевский сб., 18:2 (2017), 98–128
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb545 https://www.mathnet.ru/rus/cheb/v18/i2/p98
|
Статистика просмотров: |
Страница аннотации: | 357 | PDF полного текста: | 101 | Список литературы: | 52 |
|