|
Чебышевский сборник, 2015, том 16, выпуск 3, страницы 276–284
(Mi cheb418)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Free commutative $g$-dimonoids
[Свободные коммутативные $g$-димоноиды]
A. V. Zhuchok, Yu. V. Zhuchok Department of Algebra and System Analysis,
Luhansk Taras Shevchenko National University,
Gogol square, 1, Starobilsk, 92703, Ukraine
Аннотация:
Диалгеброй называется векторное пространство, снабжённое двумя бинарными операциями $\dashv $ и $\vdash $, удовлетворяющими следующим аксиомам:
\begin{gather*}
(D1)\quad (x\dashv y)\dashv z=x\dashv (y\dashv z),\\
(D2)\quad (x\dashv y)\dashv z=x\dashv (y\vdash z),\\
(D3)\quad (x\vdash y)\dashv z=x\vdash (y\dashv z),\\
(D4)\quad (x\dashv y)\vdash z=x\vdash (y\vdash z),\\
(D5)\quad (x\vdash y)\vdash z=x\vdash (y\vdash z).
\end{gather*}
Это понятие было введено Лодэ во время изучения феномена периодичности в алгебраической $K$-теории. Алгебры Лейбница являются некоммутативной версией алгебр Ли, а диалгебры – версией ассоциативных алгебр. Напомним, что любая ассоциативная алгебра даёт алгебру Ли, если положить $[x, y] =xy-yx$. Диалгебры связаны с алгебрами Лейбница аналогично тому как связаны между собой ассоциативные алгебры и алгебры Ли. Диалгебра является линейным аналогом димоноида. Если операции димоноида совпадают, то он превращается в полугруппу. Таким образом, димоноиды обобщают полугруппы.
Пожидаев и Колесников рассмотрели понятие $0$-диалгебры, то есть векторного пространства, снабжённого двумя бинарными операциями $\dashv $ и $\vdash$, удовлетворяющими аксиомам $(D2)$ и $(D4)$. Это понятие имеет связи с алгебрами Рота-Бакстера, а именно известна структура алгебр Рота-Бакстера, возникающих на 0-диалгебрах.
Понятие ассоциативной $0$-диалгебры, то есть $0$-диалгебры с двумя бинарными операциями $\dashv$ и $\vdash$, удовлетворяющими аксиомам $(D1)$ и $(D5)$, является линейным аналогом понятия $g$-димоноида. Для того, чтобы получить $g$-димоноид, мы должны опустить аксиому $(D3)$ внутренней ассоциативности в определении димоноида. Аксиомы димоноида и $g$-димоноида появляются в тождествах триалгебр и триоидов, введенных Лодэ и Ронко.
Класс всех $g$-димоноидов образует многообразие. Строение свободных $g$-димоноидов и свободных $n$-нильпотентных $g$-димоноидов было описано в статье второго автора. Класс всех коммутативных $g$-димоноидов, то есть $g$-димоноидов с коммутативными операциями, образует подмногообразие многообразия $g$-димоноидов.
Свободный димоноид в многообразии коммутативных димоноидов был построен в статье первого автора.
В этой статье мы строим свободный коммутативный $g$-димоноид, а также описываем наименьшую коммутативную конгруэнцию на свободном $g$-димоноиде.
Библиография: 15 названий.
Ключевые слова:
димоноид, $g$-димоноид, коммутативный $g$-димоноид, свободный коммутативный $g$-димоноид, полугруппа, конгруэнция.
Поступила в редакцию: 01.07.2015
Образец цитирования:
A. V. Zhuchok, Yu. V. Zhuchok, “Free commutative $g$-dimonoids”, Чебышевский сб., 16:3 (2015), 276–284
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb418 https://www.mathnet.ru/rus/cheb/v16/i3/p276
|
Статистика просмотров: |
Страница аннотации: | 327 | PDF полного текста: | 139 | Список литературы: | 52 |
|