Чебышевский сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сборник, 2014, том 15, выпуск 2, страницы 122–133 (Mi cheb344)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

On a new measure on infinite dimensional unite cube

I. Sh. Jabbarov

Ganja State University
Список литературы:
Аннотация: Measure Theory plays an important role in many questions of Mathematics. The notion of a measure being introduced as a generalization of a notion of the size of a segment made many of limiting processes be a formal procedure, and by this reason stood very productive in the questions of Harmonic analysis. Discovery of Haar measure was a valuable event for the harmonic analysis in topological groups. It stood clear that many of measures, particularly, the product of Lebesgue measure in finite dimensional cube $[0,1]^{n} $ could be considered as a Haar measure. The product measure has many important properties concerning projections (see [1,3]). The theorems of Fubini and Tonelly made it very useful in applications.
In this work we show that the coinsidence of considered measures, observed in finite dimensional case, impossible for infinite dimensional case, despite that such a representation was in use without proof. Considering infinite dimensional unite cube $\Omega =[0,1]\times [0,1]\times \cdots $, we define in this cube the Tichonoff metric by a special way despite that it induces the same topology. This makes possible to introduce a regular measure eliminating difficulties connected with concentration of a measure, with the progress of a dimension, around the bound. We use the metric to define a set function in the algebra of open balls defining their measure as a volume of open balls. By this way we introduce a new measure in infinite dimensional unite cube different from the Haar and product measures and discuss some differences between introduced measure and the product measure.
Main difference between the introduced measure and Haar measure consisted in non invariance of the first. The difference between the new measure and product measure connected with the property: let we are given with a infinite family of open balls every of which does not contain any other with total finite measure; then they have an empty intersection. Consequently, every point contained in by a finite number of considered balls only.
This property does not satisfied by cylindrical set. For example, let $D_{1} =I_{1} \times I\times I\times \cdots $, $D_{2} =I_{2} \times I_{1} \times I\times I\times \cdots,\dots$

$$ I=[0,1], I_{k} =\left[0,\frac{k}{k+1} \right], k=1,2,.... $$
It clear that every of these cylindrical sets does contain any other, but their intersection is not empty (contains zero). This makes two measures currently different.
Bibliography: 8 titles.
Ключевые слова: Measure theory, Lebesgue measure, Haar measure, Borel measure.
Поступила в редакцию: 13.03.2014
Тип публикации: Статья
УДК: 517
Язык публикации: английский
Образец цитирования: I. Sh. Jabbarov, “On a new measure on infinite dimensional unite cube”, Чебышевский сб., 15:2 (2014), 122–133
Цитирование в формате AMSBIB
\RBibitem{Dzh14}
\by I.~Sh.~Jabbarov
\paper On a new measure on infinite dimensional unite cube
\jour Чебышевский сб.
\yr 2014
\vol 15
\issue 2
\pages 122--133
\mathnet{http://mi.mathnet.ru/cheb344}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cheb344
  • https://www.mathnet.ru/rus/cheb/v15/i2/p122
    Исправления
    Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:199
    PDF полного текста:87
    Список литературы:39
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024