Чебышевский сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сборник, 2014, том 15, выпуск 1, страницы 55–64 (Mi cheb325)  

О многообразии алгебр отношений с операцией двойной цилиндрофикации

Д. А. Бредихин

Саратовский государственный технический университет им. Гагарина Ю. А.
Список литературы:
Аннотация: Множество бинарных отношений, замкнутое относительно некоторой совокупности операций над ними, образует алгебру, называемую алгеброй отношений. Альфред Тарский был первым из математиков, кто начал рассматривать алгебры отношений с точки зрения теории универсальных алгебр. Одним из важных направлений в исследованиях алгебр отношений является изучение их свойств, выраженных в виде тождеств. Это приводит к необходимости изучения многообразий, порожденных различными классами алгебр отношений.
Для заданного множества $\Omega$ операций над бинарными отношениями обозначим через $R\{\Omega\}$ класс алгебр, изоморфных алгебрам отношений с операциями из $\Omega$. Пусть $Var\{\Omega\}$ – многообразие, порожденное классом $R\{\Omega\}$.
Как правило, операции над отношениями задаются с помощь формул логики предикатов первого порядка. Такие операции называются логическими. Важным классом логических операций является класс диофантовых операций. Операция называется диофантовой (в другой терминологии — примитивно-позитивной), если она может быть задана с помощью формулы, которая в своей предваренной нормальной форме содержит лишь операцию конъюнкции и кванторы существования. Диофантову операцию назовем атомарной, если она может быть задана с помощью формулы, которая в своей предваренной нормальной форме содержит лишь кванторы существования. Ясно, что такие формулы могут содержать лишь одну атомарную подформулу, и, следовательно, всякая атомарная операция является унарной. Существует девять атомарных диофантовых операций (исключая тождественную).
Сосредоточим свое внимание на диофантовой операции умножения отношений $\circ$ и атомарной операции двойной цилиндрофикации, определяемых следующим образом. Для заданных отношений $\rho$ и $\sigma$ на множестве $U$, положим
$$ \rho\circ\sigma=\{(u, v):\, (\exists w) (u, w)\in \rho (w, v)\in \sigma\},\quad \nabla(\rho)=\{(u,v):\,(\exists w,z) (w,z)\in \rho\}. $$

В работе найден базис тождеств многообразия $Var\{\circ, \nabla \}$:
алгебра $(A, \cdot, {}^\ast)$ типа $(2,1)$ тогда и только тогда принадлежит многообразию $Var\{\circ, \nabla \}$, когда она удовлетворяет тождествам: $(xy)z=x(yz)$, $x^{\ast\ast}=x^\ast$, $(x^\ast)^2=x^\ast$, $x^\ast y^\ast=y^\ast x^\ast$, $x^\ast(xy)^\ast=(xy)^\ast y^\ast=(xy)^\ast$, $(xy^\ast z)^\ast=x^\ast y^\ast z^\ast=x^\ast yz$, $xyz^\ast=xyx^\ast z^\ast$, $x^\ast y z=x^\ast z^\ast yz$.
Ключевые слова: алгебра отношений, многообразия, базисы тождеств, операции цилиндрофикации.
Поступила в редакцию: 07.02.2014
Тип публикации: Статья
УДК: 501.1
Образец цитирования: Д. А. Бредихин, “О многообразии алгебр отношений с операцией двойной цилиндрофикации”, Чебышевский сб., 15:1 (2014), 55–64
Цитирование в формате AMSBIB
\RBibitem{Bre14}
\by Д.~А.~Бредихин
\paper О многообразии алгебр отношений с операцией двойной цилиндрофикации
\jour Чебышевский сб.
\yr 2014
\vol 15
\issue 1
\pages 55--64
\mathnet{http://mi.mathnet.ru/cheb325}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cheb325
  • https://www.mathnet.ru/rus/cheb/v15/i1/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024