|
Условия разрешимости задачи Коши для системы квазилинейных уравнений первого порядка, где ${f_1}(t,x), {f_2}(t,x), {S_1}, {S_2}$ — известные функции
М. В. Донцова Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского
(г. Нижний Новгород)
Аннотация:
Рассмотрена задача Коши для системы двух квазилинейных дифференциальных уравнений в частных производных первого порядка с непрерывными и ограниченными свободными членами. Сформулированы и доказаны теоремы о локальном и нелокальном существовании и единственности решений задачи Коши. Определены достаточные условия существования и единственности локального решения задачи Коши в исходных координатах, при которых решение имеет такую же гладкость по $x$, как и начальные функции задачи Коши. Определены достаточные условия существования и единственности нелокального решения задачи Коши в исходных координатах (для заданного конечного промежутка $t\in[0,T]$). Локальная теорема существования и единственности решения задачи Коши для системы квазилинейных дифференциальных уравнений в частных производных первого порядка с непрерывными и ограниченными свободными членами доказана с помощью метода дополнительного аргумента. Исследование нелокальной разрешимости задачи Коши основано на методе дополнительного аргумента. Доказательство нелокальной разрешимости задачи Коши для системы квазилинейных дифференциальных уравнений в частных производных первого порядка с непрерывными и ограниченными свободными членами опирается на глобальные оценки.
Ключевые слова:
система квазилинейных уравнений, метод дополнительного аргумента, задача Коши, глобальные оценки.
Поступила в редакцию: 24.01.2019 Принята в печать: 14.06.2023
Образец цитирования:
М. В. Донцова, “Условия разрешимости задачи Коши для системы квазилинейных уравнений первого порядка, где ${f_1}(t,x), {f_2}(t,x), {S_1}, {S_2}$ — известные функции”, Чебышевский сб., 24:2 (2023), 165–178
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb1312 https://www.mathnet.ru/rus/cheb/v24/i2/p165
|
Статистика просмотров: |
Страница аннотации: | 75 | PDF полного текста: | 23 | Список литературы: | 12 |
|