Чебышевский сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сборник, 2022, том 23, выпуск 3, страницы 156–168
DOI: https://doi.org/10.22405/2226-8383-2022-23-3-156-168
(Mi cheb1203)
 

Распределение произведений сдвинутых простых чисел в арифметических прогрессиях с растущей разностью

З. Х. Рахмонов

Институт математики им. А. Джураева (г. Душанбе)
Список литературы:
Аннотация: Получена асимптотическая формула для количества простых чисел $p_\le x_1$, $p_2\le x_2$ таких, что $p_1(p_2+a)\equiv l\pmod q$, $(al,q)=1$, при $q\le x^{\mathrm{{ae}}_0}$, $x_1\ge x^{1-\alpha}$, $x_2\ge x^\alpha$,
$$ \mathrm{{ae}}_0=\frac1{2,5+\theta+\varepsilon}, \alpha\in\left[\left(\theta+\varepsilon\right)\frac{\ln q}{\ln x}, 1-2,5\frac{\ln q}{\ln x}\right], $$
где $\theta=1/2$, если $q$ — свободное от кубов, $\theta=5/6$ в противном случае, являющимся уточнением и обобщением известной формулы А.А.Карацубы.
Ключевые слова: характер Дирихле, сдвинутые простые числа, короткая сумма характеров с простыми числами.
Поступила в редакцию: 18.07.2022
Принята в печать: 14.09.2022
Тип публикации: Статья
УДК: 511.32
Образец цитирования: З. Х. Рахмонов, “Распределение произведений сдвинутых простых чисел в арифметических прогрессиях с растущей разностью”, Чебышевский сб., 23:3 (2022), 156–168
Цитирование в формате AMSBIB
\RBibitem{Rak22}
\by З.~Х.~Рахмонов
\paper Распределение произведений сдвинутых простых чисел в арифметических прогрессиях с растущей разностью
\jour Чебышевский сб.
\yr 2022
\vol 23
\issue 3
\pages 156--168
\mathnet{http://mi.mathnet.ru/cheb1203}
\crossref{https://doi.org/10.22405/2226-8383-2022-23-3-156-168}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cheb1203
  • https://www.mathnet.ru/rus/cheb/v23/i3/p156
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:74
    PDF полного текста:28
    Список литературы:26
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024