Чебышевский сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сборник, 2021, том 22, выпуск 3, страницы 77–99
DOI: https://doi.org/10.22405/2226-8383-2018-22-3-77-99
(Mi cheb1063)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Вопросы перечисления остовных лесов некоторых графов

Е. И. Деза, Б. Мханна

Московский педагогический государственный университет (г. Москва)
Список литературы:
Аннотация: В статье рассмотрены вопросы перечисления некоторых графов специального вида. Именно, доказан ряд новых результатов о числе остовных деревьев и остовных лесов графов, играющих важную роль в прикладных задачах теории информации. Во-первых, рассмотрены свойства остовных сходящихся лесов ориентированных графов, участвующих в построении квазиметрики среднего времени первого прохода – обобщенной метрической структуры, тесно связанной с эргодическими однородными цепями Маркова. Во-вторых, изучены характеристики остовных корневых лесов и остовных сходящихся лесов неориентированных и ориентированных графов, необходимых для построения матрицы относительной лесной доступности – одной из мер близости вершин графовых структур, играющей важную роль при решении прикладных задач. Рассуждения проведены на основе нескольких простейших графовых моделей, в том числе на базе простого цикла, простого пути и их ориентированных аналогов.
В первом разделе (введении) представлена история вопроса, дан обзор основных идей и результатов работы. Рассмотрена роль графовых моделей в представлении и исследовании эргодических однородных цепей Маркова – последовательностей случайных событий с конечным или счетным числом исходов, характеризующихся тем, что распределение вероятностей параметров процесса в следующий момент времени зависит только от параметров процесса в предыдущий момент. Марковская цепь может быть изображена в виде ориентированного взвешенного графа переходов, вершины которого соответствуют состояниям цепи, а дуги – переходам между ними. С другой стороны, любой связный граф (ориентированный граф) может служить базой для построения модели простейшей цепи Маркова: если вершина $i$ имеет степень (полустепень исхода) $k$, то все выходящие из нее ребра превращаются в дуги с весами $\frac{1}{k}$. Дано определение и раскрыта роль матрицы относительной лесной доступности неориентированных и ориентированных графов для решения прикладных задач теории информации.
Во втором разделе собраны базовые определения теории графов, необходимые для формулировки и доказательства основных результатов работы. Дано определение графа и ориентированного графа, остовного подграфа, остовного корневого леса (для неориентированных графов) и остовного сходящегося леса (для ориентированных графов). Приведены примеры.
В третьем разделе дано определение чисел Фибоначчи, сформулирован и доказан ряд свойств чисел Фибоначчи, необходимых для получения основных результатов статьи в случае неориентированных пути и цикла.
В четвертом разделе доказаны две теоремы о перечислении графов, связанных с построением матрицы среднего времени первого прохода для однородной эргодической цепи Маркова. Именно, найдено количество остовных сходящихся деревьев для ориентированного пути и цикла и остовных корневых деревьев для неориентированного пути и цикла; произведен подсчет остовных лесов, состоящих из двух деревьев, для тех же графовых структур. Результаты, связанные с ориентированным случем, сформулированы в терминах величин $2^k$, $k\geq 0$; результаты для неориентированного случая сформулированы в терминах чисел Фибоначчи $u_k$, $k\geq 1$. Доказательства проведены на базе элементарных методов перечислительной комбинаторики.
В пятом разделе представлены результаты, связанные с перечислением остовных лесов, необходимых для построения матрицы относительной лесной доступности неориентированного пути и цикла и их ориентированных аналогов. Найдено общее количество остовных сходящихся лесов для ориентированного пути и цикла и остовных корневых лесов для неориентированного пути и цикла; произведен подсчет остовных сходящихся лесов, в которых вершина $i$ принадлежит дереву, сходящемуся к $j$ в ориентированном пути и цикле, и остовных корневых лесов, в которых вершина $i$ принадлежит дереву с корнем $j$ в неориентированном пути и цикле. Как и ранее, результаты, связанные с ориентированным случаем, сформулированы в терминах величин $2^k$, $k\geq 0$; результаты для неориентированного случая сформулированы в терминах чисел Фибоначчи $u_k$, $k\geq 1$.
В шестом разделе (заключении) приведены основные выводы работы, намечены результаты дальнейших исследований.
Ключевые слова: граф, путь, цикл, остовной cходящийcя корневой лес ориентированного графа, остовной корневой лес неориентированного графа, цепь Маркова, среднее время первого прохода, матрица относительной лесной доступности.
Поступила в редакцию: 15.05.2021
Принята в печать: 20.09.2021
Тип публикации: Статья
УДК: 519.1
Образец цитирования: Е. И. Деза, Б. Мханна, “Вопросы перечисления остовных лесов некоторых графов”, Чебышевский сб., 22:3 (2021), 77–99
Цитирование в формате AMSBIB
\RBibitem{DezMha21}
\by Е.~И.~Деза, Б.~Мханна
\paper Вопросы перечисления остовных лесов некоторых графов
\jour Чебышевский сб.
\yr 2021
\vol 22
\issue 3
\pages 77--99
\mathnet{http://mi.mathnet.ru/cheb1063}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-3-77-99}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cheb1063
  • https://www.mathnet.ru/rus/cheb/v22/i3/p77
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:128
    PDF полного текста:49
    Список литературы:30
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024