|
Contributions to Game Theory and Management, 2011, том 4, страницы 294–310
(Mi cgtm195)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On Games with Constant Nash Sum
Pierre von Mouche Wageningen Universiteit,
Hollandseweg 1, 6700 EW, Wageningen, The Netherlands
Аннотация:
A class of games in strategic form with the following property is identified: for every $\mathbf{n} \in E$, i.e. Nash equilibrium, the (Nash) sum $\sum_l n^l$ is constant. For such a game sufficient conditions for $E$ to be polyhedral and semi-uniqueness (i.e. $\# E \leq 1$) are given. The abstract results are illustrated by applying them to a class of games that covers various types of Cournot oligopoly and transboundary pollution games. The way of obtaining the results is by analysing so-called left and right marginal reductions.
Ключевые слова:
Oligopoly, transboundary pollution, Hahn conditions, aggregative game, co-strategy mapping, marginal reduction, non-differentiable payoff function, structure of set of Nash equilibria, game in strategic form, convex analysis.
Образец цитирования:
Pierre von Mouche, “On Games with Constant Nash Sum”, Contributions to Game Theory and Management, 4 (2011), 294–310
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cgtm195 https://www.mathnet.ru/rus/cgtm/v4/p294
|
|