Contributions to Game Theory and Management
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Contributions to Game Theory and Management:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Contributions to Game Theory and Management, 2013, том 6, страницы 316–337 (Mi cgtm129)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Solidary Solutions to Games with Restricted Cooperation

Natalia Naumova

St. Petersburg State University, Faculty of Mathematics and Mechanics, Universitetsky pr. 28, Petrodvorets, St. Petersburg, 198504, Russia
Список литературы:
Аннотация: In TU–cooperative game with restricted cooperation the values of characteristic function $v(S)>0$ are defined only for $S\in \mathcal{A}$, where $\mathcal{A}$ is a collection of some nonempty coalitions of players.
We examine generalizations of both the proportional solutions of claim problem (Proportional and Weakly Proportional solutions, the Proportional Nucleolus, and the Weighted Entropy solution) and the uniform losses solution of claim problem (Uniform Losses and Weakly Uniform Losses solutions, the Nucleolus, and the Least Square solution). These generalizations are $U$–equal sacrifice solution, the $U$–nucleolus and $qU$–solutions, where $U$ and $q$ are strictly increasing continuous functions.
We introduce Solidary (Weakly Solidary) solutions, where if a total share of some coalition in $\mathcal{A}$ is less than its claim, then the total shares of all coalitions in $\mathcal{A}$ (that don't intersect this coalition) are less than their claims. The existence conditions on $\mathcal{A}$ for two versions of solidary solution are described.
In spite of the fact that the versions of the solidary solution are larger than the corresponding versions of the proportional solution, the necessary and sufficient conditions on $\mathcal{A}$ for inclusion of the $U$–nucleolus in two versions of the solidary solution coincide with conditions on $\mathcal{A}$ for inclusion of the proportional nucleolus in the corresponding versions of the proportional solution. The necessary and sufficient conditions on $\mathcal{A}$ for inclusion $qU$–solutions in two versions of the solidary solution coincide with conditions on $\mathcal{A}$ for inclusion of the Weighted Entropy solution in the corresponding versions of the proportional solution.
Moreover, necessary and sufficient conditions on $\mathcal{A}$ for coincidence the $U$–nucleolus with the $U$–equal sacrifice solution and conditions on $\mathcal{A}$ for coincidence $qU$–solutions with the $U$–equal sacrifice solution are obtained.
Ключевые слова: claim problem; cooperative games; proportional solution; weighted entropy; nucleolus.
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Natalia Naumova, “Solidary Solutions to Games with Restricted Cooperation”, Contributions to Game Theory and Management, 6 (2013), 316–337
Цитирование в формате AMSBIB
\RBibitem{Nau13}
\by Natalia~Naumova
\paper Solidary Solutions to Games with Restricted Cooperation
\jour Contributions to Game Theory and Management
\yr 2013
\vol 6
\pages 316--337
\mathnet{http://mi.mathnet.ru/cgtm129}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cgtm129
  • https://www.mathnet.ru/rus/cgtm/v6/p316
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:222
    PDF полного текста:69
    Список литературы:60
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024