Contributions to Game Theory and Management
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Contributions to Game Theory and Management:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Contributions to Game Theory and Management, 2013, том 6, страницы 115–133 (Mi cgtm112)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Playability Properties in Games of Deterrence and Evolution in the Replicator Dynamics

David Ellison, Michel Rudnianski

LIRSA, CNAM, 2 Rue Conté, Paris 75003, France
Список литературы:
Аннотация: Since the seminal work of John Maynard Smith (1982), a vast literature has developed on evolution analysis through game theoretic tools. Among the most popular evolutionary systems is the Replicator Dynamics, based in its classical version on the combination between a standard non cooperative matrix game and a dynamic system which evolution depends on the payoffs of the interacting species.
Despite its weaknesses, in particular the fact that it does not take into account emergence and development of species that did not initially exist, the Replicator Dynamics has the advantage of proposing a relatively simple model that analyzes and tests some core features of Darwinian evolution.
Nevertheless, the simplicity of the model reaches its limits when one needs to predict accurately the conditions for reaching evolutionary stability. The reason for it is quite obvious: it stems from the possible difficulties to find an analytical solution to the system of equations modelling the Replicator Dynamics.
An alternative approach has been developed, based on matrix games of a different kind, called Games of Deterrence. Matrix Games of Deterrence are qualitative binary games in which selection of strategic pairs results for each player in only two possible outcomes: acceptable (noted 1) and unacceptable (noted 0). It has been shown (Rudnianski, 1991) that each matrix Game of Deterrence can be associated in a one to one relation with a system of equations called the playability system, the solutions of which determine the playability properties of the players' strategies.
Likewise, it has been shown (Ellison and Rudnianski, 2009) that one could derive evolutionary stability properties of the Replicator Dynamics from the solutions of the playability system associated with a symmetric matrix Game of Deterrence on which the Replicator Dynamics is based.
Thus, it has been established that (Ellison and Rudnianski, 2009):
  • To each symmetric solution of the playability system corresponds an evolutionarily stable equilibrium set (ESES)
  • If a strategy is not playable in every solution of the playability system, the proportion of the corresponding species in the Replicator Dynamics vanishes with time in every solution of the dynamic system
Ключевые слова: evolutionary games, Games of Deterrence, playability, Replicator Dynamics, species, strategies.
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: David Ellison, Michel Rudnianski, “Playability Properties in Games of Deterrence and Evolution in the Replicator Dynamics”, Contributions to Game Theory and Management, 6 (2013), 115–133
Цитирование в формате AMSBIB
\RBibitem{EllRud13}
\by David~Ellison, Michel~Rudnianski
\paper Playability Properties in Games of Deterrence and Evolution in the Replicator Dynamics
\jour Contributions to Game Theory and Management
\yr 2013
\vol 6
\pages 115--133
\mathnet{http://mi.mathnet.ru/cgtm112}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/cgtm112
  • https://www.mathnet.ru/rus/cgtm/v6/p115
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:205
    PDF полного текста:144
    Список литературы:32
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024