|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, номер 1-2, страницы 121–136
(Mi basm552)
|
|
|
|
Postoptimal analysis of a finite cooperative game
Vladimir Emelicheva, Olga Karelkinab a Belarusian State University, ave. Independence, 4, Minsk 220030, Belarus
b Systems Research Institute, PAN, Newelska, 6, Warsaw 01-447, Poland
Аннотация:
We consider a finite cooperative game of several players with parameterized concept of equilibrium (optimality principles), when relations between players in coalition are based on the Pareto maximum. Introduction of this optimality principle allows to connect classical notions of the Pareto optimality and Nash equilibrium. Lower and upper bounds are obtained for the strong stability radius of the game under parameters perturbations with the assumption that arbitrary Hölder norms are defined in the space of outcomes and criteria space. Game classes with an infinite radius are defined.
Ключевые слова и фразы:
multiple criteria, strong stability radius, parametric optimality, Nash equilibrium, Pareto optimality, Hölder norm.
Поступила в редакцию: 13.04.2021
Образец цитирования:
Vladimir Emelichev, Olga Karelkina, “Postoptimal analysis of a finite cooperative game”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 1-2, 121–136
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm552 https://www.mathnet.ru/rus/basm/y2021/i1/p121
|
Статистика просмотров: |
Страница аннотации: | 91 | PDF полного текста: | 28 | Список литературы: | 17 |
|