|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, номер 2, страницы 44–61
(Mi basm532)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Research articles
Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
Jenő Szirmai Budapest University of Technology and Economics Institute of Mathematics, Department of Geometry, Budapest, P. O. Box: 91, H-1521
Аннотация:
In the present paper we study $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries, which are homogeneous Thurston $3$-geometries. We analyse the interior angle sums of geodesic triangles in both geometries and we prove that in $\mathbf{S^2}\times\mathbf{R}$ space it can be larger than or equal to $\pi$ and in $\mathbf{H^2}\times\mathbf{R}$ space the angle sums can be less than or equal to $\pi$. This proof is a new direct approach to the issue and it is based on the projective model of $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries described by E. Molnár in [7].
Ключевые слова и фразы:
thurston geometries, $\mathbf{S^2}\times\mathbf{R}$, $\mathbf{H^2}\times\mathbf{R}$ geometries, geodesic triangles, interior angle sum.
Поступила в редакцию: 25.01.2020
Образец цитирования:
Jenő Szirmai, “Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 2, 44–61
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm532 https://www.mathnet.ru/rus/basm/y2020/i2/p44
|
Статистика просмотров: |
Страница аннотации: | 118 | PDF полного текста: | 26 | Список литературы: | 17 |
|