|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, номер 2, страницы 3–10
(Mi basm528)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Research articles
New form of the hidden logarithm problem and its algebraic support
D. N. Moldovyan St. Petersburg Institute for Informatics and Automation
of Russian Academy of Sciences,
14-th line 39, 199178, St. Petersburg,
Russia
Аннотация:
The paper introduces a new form of the hidden discrete logarithm problem defined over finite non-commutative associative algebras containing two-sided global unit and sets of local left-sided and right-sided units. The proposed form is characterized in using a new mechanism for masking the finite cyclic group in which the base exponentiation operation is performed. Local units act in frame of subsets of non-invertible vectors and are used as elements of the private key in the proposed post-quantum digital signature scheme. A new 4-dimensional algebra is introduced as algebraic support of the proposed cryptoscheme. Formulas describing units of different types are derived.
Ключевые слова и фразы:
finite associative algebra, non-commutative algebra, right-sided unit, left-sided unit, local units, discrete logarithm problem, hidden logarithm problem, post-quantum cryptography, digital signature.
Поступила в редакцию: 08.02.2019
Образец цитирования:
D. N. Moldovyan, “New form of the hidden logarithm problem and its algebraic support”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 2, 3–10
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm528 https://www.mathnet.ru/rus/basm/y2020/i2/p3
|
Статистика просмотров: |
Страница аннотации: | 173 | PDF полного текста: | 40 | Список литературы: | 16 |
|