|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, номер 2, страницы 41–55
(Mi basm506)
|
|
|
|
The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials
Dana Schlomiuka, Nicolae Vulpeb a Département de Mathématiques
et de Statistiques Université de Montréal
b Institute of Mathematics and Computer Science,
Academy of Science of Moldova
Аннотация:
In this paper we provide affine invariant necessary and sufficient conditions for a non-degenerate quadratic differential system to have an invariant conic $f(x, y)=0$ and a Darboux invariant of the form $f(x, y)^\lambda e^{st}$ with $\lambda,s\in \mathbb{R}$ and $s\ne0$. The family of all such systems has a total of seven topologically distinct phase portraits. For each one of these seven phase portraits we provide necessary and sufficient conditions in terms of affine invariant polynomials for a non-degenerate quadratic system in this family to possess this phase portrait.
Ключевые слова и фразы:
quadratic differential system, invariant conic, darboux invariant, affine invariant polynomial, group action, phase portrait.
Поступила в редакцию: 10.07.2019
Образец цитирования:
Dana Schlomiuk, Nicolae Vulpe, “The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 2, 41–55
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm506 https://www.mathnet.ru/rus/basm/y2019/i2/p41
|
|