|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2018, номер 1, страницы 67–75
(Mi basm471)
|
|
|
|
Properties of finite unrefinable chains of ring topologies for nilpotent rings
V. I. Arnautova, G. N. Ermakovab a Institute of Mathematics and Computer Science, Chişinău, Moldova
b Transnistrian State University, 25 October str., 128, Tiraspol, 278000, Moldova
Аннотация:
Let $R$ be a nilpotent ring and let $(\mathfrak M,<)$ be the lattice of all ring topologies or the lattice of all ring topologies in each of which the ring $R$ possesses a basis of neighborhoods of zero consisting of subgroups. If $\tau_0\prec_\mathfrak M\tau_1\prec_\mathfrak M\dots\prec_\mathfrak M\tau_n$ is an unrefinable chain of ring topologies from $\mathfrak M$ and $\tau\in\mathfrak M$, then $k\leq n$ for any chain $\sup\{\tau,\tau'_0\}=\tau'_1<\tau'_2<\dots<\tau'_k=\sup\{\tau,\tau_n\}$ of topologies from $\mathfrak M$.
Ключевые слова и фразы:
topological rings, lattice of ring topologies, modular lattice, chain of topologies, unrefinable chain, nilpotent rings.
Поступила в редакцию: 22.01.2018
Образец цитирования:
V. I. Arnautov, G. N. Ermakova, “Properties of finite unrefinable chains of ring topologies for nilpotent rings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 1, 67–75
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm471 https://www.mathnet.ru/rus/basm/y2018/i1/p67
|
|