|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2018, номер 1, страницы 120–138
(Mi basm470)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Integrability conditions for a class of cubic differential systems with a bundle of two invariant straight lines and one invariant cubic
Dimitru Cozmaa, Anatoli Dascalescub a Department of Mathematics, Tiraspol State University, 5 Gh. Iablocichin str., Chişinău, MD2069, Republic of Moldova
b Institute of Mathematics and Computer Science, 5 Academiei str., Chişinău, MD2028, Republic of Moldova
Аннотация:
We determine conditions for the origin to be a center for a class of cubic differential systems having a bundle of two invariant straight lines and one invariant cubic. We prove that a fine focus $O(0,0)$ is a center if and only if the first three Lyapunov quantities vanish.
Ключевые слова и фразы:
cubic differential system, center-focus problem, invariant algebraic curve, integrability.
Поступила в редакцию: 26.03.2018
Образец цитирования:
Dimitru Cozma, Anatoli Dascalescu, “Integrability conditions for a class of cubic differential systems with a bundle of two invariant straight lines and one invariant cubic”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 1, 120–138
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm470 https://www.mathnet.ru/rus/basm/y2018/i1/p120
|
|