|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2017, номер 3, страницы 3–22
(Mi basm461)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Semi-symmetric isotopic closure of some group varieties and the corresponding identities
Halyna Krainichuk, Olena Tarkovska V. Stus Donetsk National University, Department of mathematical analysis and differential equations, 21000 Vinnytsia, Ukraine
Аннотация:
Four families of pairwise equivalent identities are given and analyzed. Every identity from each of these families defines one of the following varieties: 1) the semi-symmetric isotopic closure of the variety of all Boolean groups; 2) the semi-symmetric isotopic closure of the variety of all Abelian groups; 3) the semi-symmetric isotopic closure of the variety of all groups; 4) the variety of all semi-symmetric quasigroups. It is proved that these varieties are different and form a chain. Quasigroups belonging to these varieties are described. In particular, quasigroups from 1) and 2) varieties are medial and in addition, they are either groups or non-commutative semi-symmetric quasigroups.
Ключевые слова и фразы:
group, quasigroup, identity, isotopic closure, variety, totally symmetric, semi-symmetric, commutative.
Поступила в редакцию: 30.11.2016
Образец цитирования:
Halyna Krainichuk, Olena Tarkovska, “Semi-symmetric isotopic closure of some group varieties and the corresponding identities”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 3, 3–22
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm461 https://www.mathnet.ru/rus/basm/y2017/i3/p3
|
|